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ABSTRACT

The various aspects of helicopter design and human-powered aircraft design were
studied to present a program to build a human-powered helicopter (HPH) at the Naval
Postgraduate School. The HPH will be designed to meet the requirements for the AHS-
Sikorsky Award. The helicopter design is refined, and the feasibility of construction is
assessed. In addition to pursuing a significant historical achievement, the program seeks
to enchance the helicopter and composite programs of the Aeronautical Engineering
curriculum at the NPS. The benefits to NPS in terms of research topics and a research
aircraft are presented. Potential future uses for ultra-low-powered aircraft technology are

also outlined.
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I. INTRODUCTION TO HUMAN-POWERED FLIGHT

A. HISTORY OF HUMAN-POWERED FLIGHT

1. Fixed Wing

The development of modern human-powered aircraft
technology has been motivated primarily by a series of prizes.
The first significant step toward building a human- powered
aircraft capable of level flight occurred in 1935 when an
aircraft called the Mufli competed for a 5,000 Mark prize.
Although unable to sustain level flight, it none-the-less
represented the first serious attempt to achieve human-
powered flight.[Ref.l: p.141]

In 1959 a British industrialist named Henry Kremer offered
a prize of 5,000 pounds sterling for the first human-powered
aircraft to fly a figure-eight course around two pylons one-
half of a mile apart. Although aircraft had been able to {ly
a straight mile for many years it was not until 1977 that the
problem of making the turns was solved. The Gossamer Condor,
designed by Dr. Paul MacCready Jr., won the prize which had
increased to 50,000 pounds by then.

It was MacCready’s innovative thinking in attacking the
overall problem that allowed the team to win the prize.
MacCready designed a lightweight and simpie airframe with a

much larger planform (95-foot span with a 12-foot chord) than




most of the human-powered aircraft flying at the time. A
larger planform allowed the airspeed to be slowed down to
10mph--well below the airspeed of any human-powered aircraft
that had been flying at the time. The highly flexible aircraft
then had a problem during turns. As a conventional-tyge
aileron was deflected in order to generate higher 1lift on cne
wing, the wing would just twist. The Gossamer team was unable
to generate sufficient roll moment to turn, so they used a
canard wing that could be tilted with respect to the aircraft
longitudinal axis to generate a yaw moment. The yaw motion
generated an airspeed differential on the two wings which in
turned rolled the aircraft in the direction of the yaw. With
the irtroduction ¢f roll-yaw aerodynamic coupling for turns
and the very low airspeed to reduce the power required, they
were easily able to win the first Kremer Prize. [Ref.2:
Chap.4]

In 1979, *i..e same team won a 100,000-pound prize offered
by Kremer for flying ac.oss the Enalish Channel. In doing so
the team also increased the distance reccrd for human- powered
aircraft to 21 miles.{[Ref.l1: p.141]

Perhaps the most notable achievement in human-powered
flight to date has been a venture called the Daedalus
Project. A team originating from MIT built an aircraft to re-
create the mythical flight by Daedalus from Crete to an island
72 miles away. The team took several years and spent nearly a

million dollars, used the highest technological materials and




methods, and created an aircraft with a wingspan larger than
most airliners but weighing only 68 pounds. In the process of
achieving their goal, they built a prototype airplane called
the Light Eagle. The Light Eagle was used to conduct many
flight tests at Edwards AFB, and set many records in the
process, including extending the distance record to over 37
miles. [Ref.4]

2. Rotary Wing

The effort to build a human-powered helicopter has not
been as successful as the fixed-wing efforts. Although many
have been built in the U.S., U.K., Germany and Japan, the only
helicopter to achieve flight has been an aircraft called the
Da Vinci III. The Da Vinci II1 1is a single-piloted, two-
bladed, single-main-rotor, tip-driven helicopter with a 100-ft
radius. Inspired by the 1Igor 1I. Sikorsky Human-powered
Helicopter Competition (see next section), the Da Vinci
finally achieved the first human-powered hover in Dec, 1989.
Built by engineering students at California Polytechnic
University, San Luis Obispo, it represented the third aircraft
they have built in a program that started in 1981. [Ref.3:

p.30]

B. IGOR I. SIKORSKY HUMAN-POWERED HELICOPTER COMPETITION
In 1980 the American Helicopter Society offered a prize of
$10,000 to the first human-powered helicopter and established

a set of rules to govern the competition. As of May 1991, the




prize money stood at $20,000. The basic requirements of the

Igor I. Sikorsky Award are that:

* The helicopter must hover for one minute.

* The helicopter must momentarily achieve a height of three
meters.

* The helicopter must remain within a square that is ten
meters on each side.

* As many pilots as desired may be used.
* No forms of energy storage may be used.

* The pilot (s) must not rotate.

A complete copy of the competition rules is included as

Appendix C.

C. POTENTIAL USES FOR ULTRA-LOW-POWERED AIRCRAFT

Before discussion of the aircraft design, a quick look at
some of the practical applications of ultra-low-powered flight
technology is given. This section is meant to show the reader
that this project is not merely a sensational attempt to earn
a spot in the history books, but that there are serious
benefits to be realized from the project. Benefits as a
research vehicle and test aircraft, in addition to the
research subjects necessary to complete the project, are
presented in Chapter VI.

Aircraft which require very little power include very long
endurance aircraft. In this respect, human-powered aircraft

technology would be suitable for reconnaissance, surveillance,




and search aircraft; much in the same vein that lighter-than-
air aircraft are under consideration for the same missions.
Very high altitude aircraft also operate in the low Reynolds
number flight regime, despite having a relatively high Mach
number.

A practical and safe vertical takeoff and landing
Remotely Piloted Vehicle (RPV) design is needed for shipboard
application. Use of this ultra low powered technology would
allow a large payload and have tremendous endurance. It would
also have the advantage of being fabricated with inexpensive
materials, rendering the aircraft expendable. The slow
rotation of the blades make for a much safer vehicle,
especially in the cramped shipboard application.

Another possible by-product might be an aircrew escape
system. If a parafoil could be made to have a lift-to-drag
ratio of 30, a pilot ejecting at 12,000 feet could glide 60
miles to a safe area.

Although a helicopter powered by one person will not
specifically have any direct application to aviation in
general, the technology derived from a project such as this

can be used to develop future aviation-related projects.




II. DESIGN BACKGROUND

A. POWER AVAILABLE

1. Pilot Position

Most non-flight-vehicle related human-powered references
and studies refer to a "rider" as the person who controls and
provides the power to propel a human-powered vehicle. Since
our vehicle is a helicopter, the operator for this aircraft
will hereafter be referred to as the "pilot".

Human-powered vehicles in general have the riders in one
of three positions: upright, prone recumbent (stomach down,
head forward), and supine recumbent (stomach up, head to the
rear). The upright position has an advantage by being the
most familiar, as it is the position for a conventional
bicycle. Studies have shown that the recumbent position
delivers more power, but has the disadvantage of requiring
time to adapt. A rider requires approximately a one-month
adaption period to become fully accustomed to a novel
bicycle.[Ref.5: p.30]

The recumbent position also has the advantage of being the
most compact with respect to the vertical axis. This will be
important in making the aircraft as low as possible. By

keeping the Center of Gravity low, the aircraft will be less




prone to rollover. Most importantly, it will keep the blades
as low as possible to take maximum advantage of ground effect.

The supine recumbent position represents the most
comfortable and practical of the two supine positions. In the
supine recumbent position, the body is doubled over more than
the prone recumbent position with the weight of the head
supported by the spine. Hence, it 1s a more natural and
relaxed position. The support necessary for the supine
recumbent position is less complicated, easier to design and
build, and will be lighter than the support for the prone
recumbent position. As such the supine recumbent position
(laying down, feet forward) will be the position of choice for
this design.

2. Past Studies

There have been exhaustive studies on human power output,
studying everything from the various physical dimensions to
nutrition studies to body size and composition. In performing
any physiological study there are literally an infinite number
of variables involved, and it becomes a study in minimizing
the impact of the uncontrollable variables with respect to the
variables being measured. As a result, there is a large amount
of data scatter and even conflicting results. Thus, the best
that can usually be gleaned from the studies is a good "feel"
for trends and the magnitude of effects of the variables

associated with human power output.




A review of past human power output studies is necessary
to estimate power levels and to design the position and
associated equipment for maximum power output. Conventional
bicycle cranks, pedals and chainwheels provide a proven system
which is reliable and simple and will be used for this design.
Although studies have shown that up to 18% more power can be
generated by combined hand cranking and pedalling [Ref.5:
p.44]1, that combination will be impractical for this design.
The pilot will be required to use his hands to control the
aircraft, and the added power will be negated by the added
weight of the necessary mechanism.

To determine the necessary gearing for the drive train and
transmission, the optimum pedal speed must be determined
first. The following pedalling parameters that can be varied
to achieve the highest power for one minute are to be

considered:

* Pedalling RPM
* Saddle height
* Crank length

* Chainwheel ellipticity

It has been shown that although the most efficient
pedalling rate is approximately 60 rpm, the most power can be
put out at the highest rpm attainable.[Ref.5: p.49] The reason
for this is that muscle cells cannot exert a continous force

but contract in extremely rapid spasms much like a piston




"firing". Thus, the individual cells can exert a
proportionately larger force when the muscle bundle is not
required to produce a long slow contraction but a quick
powerful one.

During bicycle races, riders will often exceed 200 rpm
during sprints. In achieving such high pedalling rpms there
is often a great deal of relative motion between the rider and
the cycle which would render such high rpms impractical for a
design of this nature. Figure 1 shows the relationship between
power, efficiency and torque for pedalling rpm. In achieving
higher pedalling rpms, pedalling technique becomes the

overriding factor in determining the maximum power output.
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/ Figure 1: Vadintion ol power, cfficiency, and torque pro-
duced by a cyclist with endence (crank rpm).
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Figure 1. VARIATION OF POWER, EFFICIENCY, AND TORQUE
PRODUCED BY A CYCLIST WITH CADENCE (CRANK RPM). [REF.6:
P.10]

Recent ergometer tests on the Italian National Sprinting

team have shown that for short durations (five to ten seconds)




maximum power was achieved at about 120 rpm. Over the course
of several minutes, 60 to 80 rpm gave the maximum
power. [Ref.7: p.7]

Thus, there is no single, ideal rpm that will give the
highest power over one minute, as the exact relation between
efficiency and speed cannot be explicitly determined. However,
as an estimate based on the previously mentioned studies and
the racing experience of the author, the aircraft should be
geared for 90 rpm. The use of standard bicycling components
will allow the pedals, chainwheel and cranks to be easily
changed to suit individual pilot technique and experience.
Additionally, the use of easily- interchangeable standard
components will allow simple adjustment of the main-rotor-
drive-system gear ratio.

A saddle height 1.8 to 2.0 inches above the height where
the heel can just touch the pedal at the bottom of the stroke
has been shown to give the most power.[Ref.5: p.53] This will
correspond to a slightly longer seatback-to-crank- hub length,
and will need to be taken into account when testing for pilots
and adjusting the aircraft.

Crank length has not been extensively tested since most
human-powered studies are for conventionally-pedalled bicycles
and the crank length is usually limited by bicycle/ground
clearance. Consequently, the range of crank lengths available
for conventional bicycles falls into a very narrow rarje due

to safety considerations. Crank length is typically 165-170mm
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for conventional bicycles. Studies seem to indicate that more
power can be achieved for limited periods of time with cranks
five to ten percent longer, but the results are not
conclusive.[Ref.5: p.53) Pilot technigue and familiarity will
probably necessitate the use of standard lengths, although
tests need to be conducted to find the optimum length for the
particular situation.

The use of elliptical chainwheels is a controversial
subject. Studies have shown that a high degree of ovality (on
the order of 1.2:1 and greater) definitely decreases
performance. However, moderately elliptical chainwheels of the
order of 1.1:1 seem to cften improve performance but never
diminish performance. [Ref.5: p 56]

3. Power Versus Time

Figure 2 presents human power output for various times.
The data scatter demonstrates the difficulty in precisely
defining the variables and parameters necessary for a
physiological application such as this. As such, it becomes
necessary to use one’s best Jjudgement and intuition in
applying these data to the aircraft design.

There are a number of top-quality bicycle racers locally.
The HPH team will have access to "well-trained and highly-
conditioned" athletes, so it would be reasonable to expect up
to 1.5 hp for several secconds from such a pilot. Therefore,

1.5 hp will be used as the upper limit of power for the 3-
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Figure 2. HUMAN POWER OUTPUT VERSUS TIME (REF.Z2: P.4-2]

meter hover condition, which corresponds to the condition with
the highest power requirement.

4. Miner’s Rule Applied to Human Power Levels

Studies in human power output all hold the power constant
until exhaustion is reached. In this application, two power
levels will be needed over the course of one minute: one at
the 3 meter height which will be required for approximately 5
seconds, and one very deep in ground effect. Thus, a method
determining the power available at two levels over the course
of one minute is needed.

Miner’s rule is a simple method often-used to calculate
cumulative fatigue damage for mechanical elements. The rule is

applied to a component which undergoes non-constant cyclic
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stress where the number of cycles is known at each different
stress level. Miner’s rule calculates the life of an component
based on the percentage of the life used at each stress level,
When the sum of the percentages at each stress level reaches
100%, the component has reached its fatigue life.

Mathematically, Miner’s rule is stated as:

+ - +,,, =1 (1)

n

where: n, the number of cycles at stress x
N, = the number of cycles to to the fatigue life
at stress level x

A typical S-N curve 1is presented in Figure 3. The
horizontal axis represents the number of cycles and is often
a logarithmic scale, and the vertical axis is the stress
level. The resemblance of this curve to a human power versus
time curve can be seen by comparing this curve to that in
Figure 2.

In applying Miner’s Rule to human power, the power level
is substituted for stress level and time is substituted for
the number of cycles. The pilot will be required to put out a

higher power level for approximately 5 seconds, and a lower

power level for 55 seconds. The equaticn becomes:

5 , 55 -, , (2)
TD, Tp,
where: Tp, = the time at power level 1

13




ENDURANCE tiMIY
Ng ¢ o .

Figure 3. TYPICAL STRUCTURAL COMPONENT S-N CURVE [REF.8:
P.2-6]

Tp, = the time at power level 2

The analogy appears .- justified wupon examining the
physiological mechanism behind working the human muscle to
exhaustion. The energy created by a muscle is created by the
breakdown of ATP (adrenosine triphosphate) within the muscle
cells. The cell uses glycogen to break down the ATP, and the
glycogen is created by oxidizing glucose and fatty acids with
oxygen supplied from the blood. There is a small amount of
glycogen stored within the muscle tissue for immediate use,
but extended exercise requires a steady supply of glucose or
fat from the blood system.

Thus, there are two primary modes in which the muscle
functions. The first is the "aerobic" mode where the energy
demanded by the muscle can be offset by oxygen from the blood.
In the "anaerobic" mode, the muscle can provide limited power

by relying on stored energy. The time a muscle can continue to
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function anaerobically depends on the power output demanded
and lasts anywhere from 30 seconds to several minutes.

The shape of the human power versus time curve is governed
by these two modes of performance. For short periods the
muscle functions on stored reserves, and the power is governed
by maximum strength. As the period of time increases, the
muscle increasingly relies on the blood to supply oxygen to
burn stored glycogen and the power decreases to a point where
the blood can supply both the oxygen and the oxidants
necessary to sustain the performance for several hours. This
sustained power level then equates to the endurance limit for
mechanical components.

The muscle reaches exhaustion and ceases to function when
the stored energy supplies are depleted, or are used up faster
then the blood can replenish them. Thus, Miner’s Rule would
apply, where the "life" of the muscles is that point where the
stored glycogen is depleted or the rate that stored and blood-
supplied energy is exceeded. Just as a mechanical component
fails at the fatigue life, when the muscle reaches exhaust.on
it ceases to function as well.

5. Ergometer

An ergometer 1is an apparatus designed to measure the
amount of work done by a human. Construction of an ergometer
was begun, but not completed. A photograph bf the ergometer is

included in Appendix D. The purpose of the ergometer is
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manifold. Anthropometric data are needed to determine the
dimensions for the pilot support structure, called the
"undercarriage." Pilot power measurements will be the most
valuable data to be determined. In concert with oower
measurements 1is testing the various parameters involved with
pedal power e.g., crank length, elliptic chainwheels, pedal
speed, etc. The ergometer will be instrumental in aiding to
select the pilot. Orce selected, the pilot will need a one-
month adjustment period to be able to achieve maximum power in
the recumbent pedalling position. Finally, once adjusted, the
pilot will need to be trained to peak performance.

The ergometer uses a bicycle-type wheel for inertia and a
conventional brake caliper for resistance. Wheel speed 1is
sensed using a magnetic pickoff next to a toothed wheel.
Resistance force is measured by a force transducer connected
to the Lkrake <caliper. Force transducer information is
presented in Appendix E. Inputs are to a data card designed
for an IBM compatible personal computer. The 1nstrumentation
has been acquired but not installed. When complete, the
computer will be able to give a real-time display of power

versus time and provide a hard copy c¢f the data results.

B. LESSONS LEARNED FROM PAST HUMAN-POWERED AIRCRAFT
In reviewing past projects involving human-powered
aircraft, there are many lessons to be learned regarding the

operation and logistics of a program such as this. The lessons
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regarding design and construction are discussed during the HPH
design portion referring to that particular problem.

The project that most resembles this program in terms of
scale and degree of sophistication is the Daedalus project. In
reviewing that project and that for the Gossamer Albatross, it
was surprising that members of both teams felt that the most
difficult obstacle was the travel and transportation of the
aircraft, crew and support equipment [Ref.4: p.120].

Both the Gossamer Albatross and the Daedalus projects
were required to travel to Europe, which consumed the largest
portion of their budget. Thus, in comparing the expense and
organizational difficulties of a project such as this HPH to
these two projects, an HPH will be able to be flown outdoors
locally and will not be burdened with the requirement to
travel.

Many human-powered aircraft builders were able to get
their construction materials from manufacturers in return for
some advertising in the form of decals on the aircraft. In a
project as significant as this it is anticipated that there
would be little problem in obtaining sponsorship from the
various companies. In addition, a major helicopter
manufacturer allowed Cal Poly to use their filament winding
facilities to build their main spar. Although conflict-of-
interest rules may prevent this type of sponsorship, it may

provide for a source of materials.
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When Dr. MacCready built his Gocssamer series aircraft, his
design was particularly easy to repair. He deliberately
designed a degree of crashworthiness into his aircraft during
the development stage. This allowed crash damage or design
modifications to be easily incorporated and minimized "down"
time.

Every successful human-powered aircraft had at least one
prototype. There were two Gossamer Condors, a prototype
Daedalus aircraft, and three Da Vincis. There is so much to
be 1learned from the construction of the aircraft, that a
prototype is crucial to a successful project. A detailed
analysis of construction techniques will allow the team to
avoid the construction pitfalls of previous aircraft.

The Daedalus team found that an aircraft can be engineered
as carefully as possible, but still not perform nearly to the
degree anticipated. The Daedalus prototype, called the Light
Eagle, was designed to break the Gossamer Albatross distance
record of 21 miles. But when it first flew, it could barely
stay aloft for three minutes. ({Ref.4: p.l147) The prototype
required a 12-foot extension on the wingtips and extensive
minor adjustments in equipment and technique before it finally
was able to be flown over 37 miles. [Ref.4: p.172] It can be
seen that construction of a human-powered aircraft represents
design in an uncertain flight regime that ié so difficult that
even this team of experienced human-powered aircraft designers

(that had previously won a Kremer Prize!) was still so far off
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of their performance goals that their prototype had to be
modified with a 12-foot wingtip extension. Designing an HPH
requires dealing with infinitely more complicated aerodynamic
phenomena than a fixed-wing aircraft and will most certainly

require a prototype.
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III. AIRCRAFT DESIGN

A. HUMAN-POWERED AIRCRAFT DESIGN THEORY

The fundamental design <criterion for human powered
aircraft is the limited power output. The power required must
not exceed the power available for the HPH to be able to
hover. HPH design becomes an exercise in lowering the power
required to hover,.

Basic momentum theory, which assumes that an infinite
number of blades accelerate an inviscid column of air through

the rotor disk, shows the power required to hover to be:

W3/2
Pzeq e am— (3)

Ve PAdisk

Where: P = Power Required

req
Aycx = Area of the rotor disk

W

weight of the helicopter

p density of air

It can be seen that the basic concept is to reduce the
weight and increase the effective disk area in order to reduce
P.g. Even though the HPH will not be an actuator disk, the
underlying principles still apply.

Interestingly, even though the power required is not

linearly proportional to the total weight, Drela has shown

that the power required from the pilot is proportional to the
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pilot’s weight [Ref.8: p.96). This is applicable where the
weight of the helicopter is roughly one-half of the weight of
the pilot. As such, within a reasonable weight range, the
determining factor for pilct selection becomes the specific
power (power per unit weight) the pilot 1is able to
generate.

Two parameters used to relate helicopter performance are
power loading (P.L.) and disk loading (D.L.). Disk loading is
comparable to wing loading for fixed wing aircraft. The

equations for D.L. and P.L. are:

D.L. = Y P.L. =

Tt R?

(4)

wils

A typical plot of D.L. versus P.L. for conventional
helicopters is presented in Figure 4. For this HPH, the
approximate weight will be 250 1lb., and a pilot will need to
put out approximately one horsepower, making the power loading
roughly 250 lb/hp. It can be seen that the D.L. will need to
be extremely low to be able to fly! With our pre-supposed

rotor radius of 36 feet, the disk loading is 0.061 lbs/sqg ft.

It was this concept of lowering the wing loading and
getting the power loading very high that made the Gossamer
series aircraft such a revolutionary design. By slowing the
aircraft down and increasing the planform area, the Gossamer

team was able to increase the power loading and make an

21




EFFECT OF DISC LOADING & POWER LOADING

40

30
—

POWER LOADING {hp/ib)
20
Al
!

10

] [ ] 12 18
01SC LOADIKG (1b/sq f1)

Figure 4. PLOT OF A TYPICAL DISK LOADING VERSUS POWER
LOADING FOR A CONVENTIONAL HELICOPTER.

aircraft that required much less effort to fly. So it follows
that for this design, the planform area and disk area will be
increased as much as are practical, and the power loading will
be increased to the point where the power regquired to hover

will be less than one "humanpower!"

B. ROTOR CONFIGURATION

The first consideration in designing a helicopter is the
type of rotor configuration to use. The requirement for a tail
rotor is an undesirable characteristic, as it represents a

substantial amount of energy and weight that is not used for
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lift. There are three basic configurations that avoid this
requirement: co-axial, tandem and tip-driven.

Grohsmeyer, et al., [Ref.9] evaluated the three designs
with respect to stability and control, weight, and efficiency
and concluded that a co-axial configuration represented the
optimum design.

The co-axial design is superior in all respects except for
the higher induced drag on the lower set of blades. It will be
shown that that this induced drag 1is small, but noticeable.

The co-axial design then becomes the choice for this design.

C. AIRFOIL SELECTION

1. Preliminary Considerations

The decision as to which airfoil to wuse 1is highly
influential to the design of this HPH. In determinimg the
airfoil to use for the rotor blades, there were two choices:
design our own or use one that has already been designed and
tested. Both avenues were simultaneously explored, and the
results explained in the section below.

2. Airfoil Selection Criteria

In selecting an airfoil for a human-powered aircraft there
are four main criteria. All of the criteria except one are
driven by the wing construction techniques which are explained
in detail in Chapter V.

The criterion not driven by rotor blade construction

techniques is the most obvious--high 1lift-to-drag ratio.
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Specifically, the ideal HPH airfoil has a high C*?/C,,
referred to as the "power factor." (Ref.8: p.107]

Since the rotor blade is constructed by stretching Mylar
over ribs, there cannot be any highly concave surfaces. As the
mylar is tensioned it would tend to pull away from the rib.
Between ribs the Mylar would not keep its shape but would
instead flatten out.

The third criterion is that the airfoil section must be
thick enough to contain the blade spar. Since the lightest
rotor blade construction uses a main spar for blade rigidity,
there must be enough thickness to allow for attaching the ribs
to the spar without loosing the stiffness and load carrying
capability of the rib.

The fourth criterion is to have an airfoil that is not
sensitive to small deviations in shape. The aircraft on the
whole is quite flexible compared to conventional aircraft. In
addition, the mylar skin of the rotor blades will distort
under the dynamic pressure of flight.

There are other criteria in choosing an airfoil section.
As in most airfoils, it is not desirable to have a sudden
falloff in 1lift at stall and it is undesirable to have an
airfoil that is sensitive to surface imperfections. The shape
must be easy to construct within the constraints of a human-
powered aircraft. There should not be ah excess of wvolume
within the airfoil section as any excess volume adds

unecessary weight to the aircraft. An airfoil with as small a
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pitching moment as possible is desireable, as the main spar
can be designed lighter due to reduced torsion load

requirements.

3. Low Reynolds Number Airfoil Design Theory

@. Reynolds Number Defined

Reynolds number (Re) 1s a dimensionless coefficient
that represents the ratio of inertial forces to viscous
forces. It 1is based on a "“characteristic" length, which 1is
usually the <chord; but <can be any 1length which 1is
characteristic of the flow, such as the boundary layer
thickness or momentum thickness. For purposes of this paper,
the term "Reynolds number" will imply the Reynolds number
based on the chord. At standard sea level conditions, the
chord Re is:

Re = 6,410 x V x C
where velocity (V) and chord (C) are in feet per second and
feet, respectively.

The Re of a soaring condor and albatross are on the
order of 250,000 and 300,000 respectively. [Ref.10: p.204] An
A-6E Intruder wing during a low~level flight might have a Re
on the order of 50 million. The Re for a helicopter such as an
HPH will go from zero at the center to around one million at

the blade tips.
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b. Drag

Drag on a two—-dimensional airfoil has two components:
pressure drag and skin friction drag. Pressure drag is caused
by a low pressure on an aft facing surface with a resultant
component of force acting in the direction of the airflow.
Skin friction drag is a result of the viscous forces acting
parallel to the surface resisting motion through the medium.

The flow over an airfoil will initially be laminar and
then transition to turbulent flow. However, laminar flow is
particularly prone to separation. Laminar flow has the lower
drag and is therefore the flow of choice for high lift-to-drag
airfoils. However, separated-flow drag is orders of magnitude
greater than turbulent-flow drag. Laminar flow is extremely
sensitive and takes only a very slight surface disturbance to
cause separation.

Designing an airfoil becomes a compromise in laminar
and turbulent flow. The airfoil should be designed so that it
has as much laminar flow as possible to keep drag as low as
possible, but should not be designed so the flow is just to
the point that any minor disturbance or imperfection will
cause separation. The airfoil can be designed with as much
laminar flow as practicably possible and then transitioned to
turbulent flow before it separates. Controlling transition
becomes a major part of airfoil design. Transition can be
initiated by controlling the pressure distribution or may be

artificially tripped by a mechanical device.
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c. Separation Bubble

Low Re airfoil flow is often characterized by the
formation of a separatiosn bubble. Under certain conditions the
laminar flow will separate, then transition to turbulent flow
and reattach—--forming a small "bubble." It has been shown that
there is a range of Reynolds numbers between 75,000 and
400,000 where the separation bubble dominates the flow and
determines the stall behavior [Ref.l1l: p.108].

If the airfoil geometry is designed carefully, the
separation bubble can be wused to initiate transition to
turbulent flow. If the bubble is kept small the overall drag
can be kept lower than the drag resulting from the use of a
mechanical transition device.{Ref.12: p.724]

Minimizing separation-induced pressure drag is
generally done by minimizing the convex curvature of the upper
surface of the airfoil in the transition zone. This results in
a very round upper surface.[Ref.10: p.205)

d. Stall Hysteresis

Low Reynolds number airfoils designed for high 1lift
and low drag also characteristically exhibit stall hysteresis.
Stall hysteresis is a phenomenon whereby stall inception and
stall recovery do not occur at the same angle of attack. This
presents a significant problem under stall conditions. If an
airfoil stalls, the angle of attack required to re-attach flow

to the upper surface may need to be as much as 10 degrees
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below that at which the airfoil initially stalled.[Ref.l1l:
p.107]

Stall hysteresis may become relevant with the lower
set of rotor blades for a co-axial configuration. The lower
rotor blades experience turbulent airflow regimes as a blade
passes over top of it, and if this causes separation there may
be some stall hysteresis present.

e. Wind Tunnel Testing

There has been relatively little wind tunnel research
at Reynolds numbers below about 500,000. This has been
primarily a result of relatively little demand fcr testing
within this aerodynamic regime. However, as aerodynamic
horizons expand, research in this little-explored regime is
increasing. Consequently, the subject 1s becoming better
understood as the need to know the aerodynamic theory
increases.

At Reynolds numbers below 300,000, the air flow
becomes critically sensitive and difficu.t to control.
Airfoils become extremely prone to separation, and
reattachment becomes a function of airfoil geometry and the
disturbance environment.[Ref.13: p.763] The disturbance
environment in the test section of a low-airspeed wind tunnel
is usually determined by freestream turbulence, acoustic

phenomena, and mechanical vibrations [Ref.13: p-764}.

28




Boundary layers are prone to transition or separation
by disturbances with magnitudes that are on the order of the
boundary layer thickness [Ref.14: p.470}--hence the
significance of the environmental disturbances within the wind
tunnel test section. The wave length of the acoustic noise in
the wind tunnel is roughly on the order of the boundary layer
thickness, and the acoustic noise, mechanical vibrations and
turbulence combine to affect the overall aerodynamic
characteristics.

The difficulty in wind tunnel testing comes 1in
separating and/or eliminating the effects of the three
disturbances on the performance characteristics of any given
airfoil. The ability to precisely perform mearsurements and
the procedures used have substantial effects on the results
[Ref.13: p.770].

f. Turbulence

As reviewed above, the effects of small-scale
environmental disturbances on airfeil performance are
significant. It 1is important to ascertain the effects of
larger-scale turbulence (on the order of the magnitude of one
chord length). The lower set of rotor blades in a co-axial
design operate in the turbulent downwash from the upper
rotors. It was desired to be known 1if the larger-scale
turbulence would cause premature separation on the lower set

of rotors. For Reynolds numbers on the order of 500,000, "In
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order for freestream turbulence to affect turbulent boundary-
layer behavior,the length scal= must be on the order of the
boundary-layer thickness." [Ref.14: p.470] Hence, there is not
any detrimental effects of larger-scale on turbulent boundary-
layer thickness due to upper rotcr turbulence on the lower
rotors. In fact, Reference 15 shows that passage of a highly-
turbulent pulse over an airfcil at a Reynolds number of
500,000 has a momentary stabilizing effect on the transitional
and turbulent boundary layers. The boundary layer 1is
momentarily laminarized before returning to its previous
transitional or turbulent state.

g. Summary.

Given the sensitivity of the boundary layer to the
disturbance envircnment, low Reynolds number wind tunnel
results become more of a means c¢f comparing airfoils rather
than a means of obtaining extremely accurate performance data.
As a result, computational analysis is increasingly replacing
wind tunnel testing for low Reynolds number airfoils. The
airfoils for both the Gossamer aircraft and the Daedalus
aircraft were designed using computational methods, and none
was ever tested in a wind tunnel before the aircraft flew.

The Daedalus team verified airfoil performance using flow
visualization tests on the wing in flight. A mixture of
kerosene and black powder dye was coated oh the wing. As the

kerosene evaporated, the powder was lef. behind. The laminar




flow left a thick, smooth residue and the turbulent flow left
a thin, streaked residue. They were able to see the transition
point and compare it to analytical data. Since the transition
point matched the computed position, it was assumed that the
actual airfoil performance would match the computed
performance as well.[Ref.12: p.731]

4. Final Airfoil Selection

Upon reviewing low Reynolds number airfoil design, the
author determined that the task of designing airfoils for an
HPH would be far too large of a project for a single person to
accomplish within the time constraints of this project. The
NPS didn’t have any on-line programs for airfoil design, and
writing one specifically for the purpose of this project, or
obtaining a program from NASA would have been prohibitive.
Additionally, any new design program woud have to be validated
with wind tunnel test data. As a result, it was decided to use
already designed and proven airfoils.

The next decision to be made was whether the rotor blade
would be aerodynamically tailored or of constant airfoil. An
aerodynamically tailored rotor blade would have different
airfoils as a function of r/R, with each section having an
airfoil optimized for that Reynolds number. In addition to
greatly complicating the rotor blade construction, aerodynamic
tailoring would have the added requirement to be able to blend

one airfoil into another. Additionally, aerodynamic tailoring
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would require a tremendous amount of airfoil data at a
multitude of Reynolds numbers. Unfortunately, there is just
not enough data to be able to compare all of the airfoils at
all of the Reynolds numbers available. With the extremely
diverse variety of low Reynolds airfoil shapes, blending one
airfoil shape into the next would result in unknown airfoil
shapes with correspondingly uncertain aerodynamic performance.
Consequently, aerodynamic tailoring would only be practical if
a "family" of airfoils could be found. With a family of
airfoils, the same basic design is modified siigntly to
optimize performance at different Reynolds numbers. It then
becomes reasonable to interpolate between designs to
specifically account for the change in Reynolds number along
each blade station.

Thus began a thorough search for 1low Reynolds number
airfoils and airfoil data. Other than for human-powered
aircraft, low Reynolds number airfoils have been primarily
designed for sailplanes and wind turbines. Ref.l6 1is a
compendium of airfoils with performance data at Reynolds
numbers of 300,000 and below, and was targeted for remotely-
controlled glider enthusiasts. Reference 17 is a compendium of
low Reynolds number airfoils and performance data assembled
for the Department of Energy for wind turbine use. A few of
the potential airfoil candidates are discussed below.

The most obvious source of an airfoil would be from past

human-powered aircraft. The Gossamer series aircraft used an
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airfoil specially designed for operation at a Reynolds number
of 600,000 by Dr. Peter Lissaman. Called the Lissaman 7769 it

was also used by the Da Vinci and is shown below:

Figure 5. LISSAMAN 7769 AIRFOIL (REF.18]

The Daedalus aircraft used a family of three airfoils
designed by Prof. Mark Drela: the DAI 1135, DAI 1336, and DAI
1238 which were optimized for Reynolds numbers of 500,000,
375,000, and 250,000, respectively. The airfoil coordinates
are proprietary and not published in this report, but are
available for use on the project [Ref.19). The DAI 1135 has a
maximum power factor of 148 at 8 degrees angle of attack with

a pitching moment coefficient of -0.12 [Ref.12: p.730].

T~

Figure 6. DAI 1135 AIRFOIL [REF.20]

The Gu-25 was designed for high lift and low drag by T.
Nonweiler for operation at a Reynolds number of 500,000. It
has a maximum power factor of 132. With a zefo pitching moment
in the "working range," the airfoil has some positive

characteristics. But it also exhibits some negative
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characteristics--primarily that the airfoil separation drag is
very sensitive to surface imperfections. (Ref.2l1: p.16] The

Gu-25 is depicted in Figure 7 below:

—

Figure 7. Gu-25-5(11)8 AIRFOIL [REF.17: P.A-348]

A series of airfoils designed in Germany by F.X. Wortmann
for high lift exhibit good lift~to-drag characteristics, but
the highly reflexed shape leads to difficulty in tensioning
and attaching the skin to the concave surfaces. The design
also results in a larger pitching moment. One such airfoil,

the FX63-137, is depicted in Figure 8.

T

M

Figure 8. WORTMANN FX63-137 AIRFOIL [REF.17: P.A-102]

Similar to the FX63-137, the FX76-140MP was designed
specifically for human-powered applications by Wortmann in
1976. The DAI series have a higher power factor than the FX63-
137 and a similar power factor to the FX76-140, but the DAI
series has a lower pitching moment than the Wortmann airfoils.

[Ref.B: p.106]
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Selecting the optimum airfoil was not a clear cut
procedure. Power factor data were not available for all
airfoils at the same Reynolds number, and some of the merits
of the particular airfoils had to be accounted for somewhat
subjectively. The airfoils with the best overall
characteristics appears to be the DAI series airfoils. They
have the highest power factor (C/*?/C,), yet have a low
pitching moment. Being specifically designed for human-powered
aircraft, they are not sensitive to surface imperfections, and
have a satisfactory geometric shape for construction purposes.
They also afford the opportunity to use the family of three
airfoils if necessary. Consequently, the DAI airfoils will be

used for the HPH.

D. PLANFORM

1. Preliminary considerations

The overall goal in designing the rotor blade planform was
to optimize the design for ease of construction and most
efficient 1lift generation. The ideal rotor blade would
incorporate twist and taper; but the easiest rotor blade to
construct is one with a constant chord. In order to evaluate
the trade-offs between creating the most efficient rotor blade
and one that was easy to construct, it was first necessary to
determine the variable parameters for rotor blade design. The
advantages of each parameter were then balanced against the

disadvantages arising from construction requirements.
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2. Rotor Diameter

Many human-powered aircraft have had rotor diameters or
wing spans determined not by some critical design parameter
but by some arbitrary physical constraint such as the width of
the hangar it was stored in, or the size of the gym where it
was flown! So it follows with this design. The rotor blade
length (rotor radius) was initially held fixed at 36 feet,
giving the rotor an overall diameter of 72 feet. Arrived at
heuristically, this number represented a compromise between
length, construction and ease of finding a 1location for
flight. Most importantly, it was approximately the size that
Grohsmeyer, et al. concluded with as their design radius
[Ref.9].

The 36~foot radius represented a number which was known to
be roughly optimum that could be held constant, while all of
the other design parameters could be varied. After the design
was completed, the performance for a 36-foot rotor radius was
very reasonable, so the 36-foot radius was retained as the
design radius.

Holding the initial radius constant did not unreasonably
constrain the design, as the rotor tips will be designed to be
easily modified. It will be easy to add an extension on to the
rotor blade if more planform area is needed, or to modify the
tip shape. Obviously, it would be easy to shorten the rotor

blade should it prove necessary.
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3. Twist and Taper

The 1ideal rotor Dblade for a hovering helicopter has
uniform inflow over the rotor disk, with each section of the
rotor blade operating at a constant angle of attack. In
addition, profile losses will be minimized if the section is
operating at the optimum angle of attack.[Ref.22: p.99]. Hence
the section will be designed to operate at the maximum power
factor (C,*?/C,). In achieving the optimum angle of attack for
a hovering helicopter rotor, blade twist and taper (or a
combination) may be used to optimize the blade.

Ideal taper for a rotor blade assumes a uniform induced
velocity and a constant blade pitch angle. Ideal taper for a
four-bladed rotor is shown in Figure 9. The equation for ideal
taper is C

c= Sy (5)
where: ¢ = chord

C.yp = tip chord

[}

r local radius

"

R rotor radius
Source: [Ref.22: p.46)

Ideal twist for a conventional hovering helicopter is

0 =a-+ g{% (6)
where: 0 = blade pitch angle
a = local angle of attack
v = induced velocity
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Figure 9. ROTOR WITH IDEAL TAPER [REF.23: P.47]

Q

!

rotor speed

r local rotor radius
Source: [Ref.17: p.46]

Ideal twist also assumes uniform induced velocity. A graph
of ideal twist for constant chord blades and for ideally
tapered blades is presented in Figure 10.

To get a feel for the magnitude of the effects of taper
and twist, Table 1 is presented for a, rotor of solidity equal
to 0.040 for two torque coefficients (C,).

The above results are valid for a rotor solidity of 0.042
to 0.060. It is noteworthy that a linearly twisted and tapered
blade is only 2 percent less efficient than an optimum rotor.
The optimum rotor is based upon a uniform induced velocity,

and an ideal geometry which is impractical and unrealistic for

a two-bladed rotor. The apparently small benefit from an
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Figure 10. IDEAL TWIST FOR BLADES WITH CONSTANT CHORD AND
BLADES WITH IDEAL TAPER [REF.23: P.47]

ideally tapered and twisted rotor is not an adequate tradeoff
for a blade that will be significantly more complicated to

construct.

Table I. PERCENT INCREASE IN THRUST FROM UN1WiSTED AND
UNTAPERED BLADE FOR C,=0.00026 to 0.00044 [Ref.16: p.97)

[ aaae S S
Blade Twist Blade Taper Thrust Increase
(degrees) Ratio (percent)
0 3 | 0
-8 3 5
-12 3 5
Ideal Opt imum 7
[ g N L ]

In considering the degree to which twist and taper will
complicate the rotor blade construction, twist will have the

most significant contribution toward complicating the
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construction. In making a flat blade it will be easy to lay
out the ribs and spar on a flat surface. Having twist will
require a different pitch angle for each rib and make laying
out, constructing and storing the blade difficult. Hence, the
decision was made to investigate designing a blade with taper
and no twist.

It can be shown that different blade geometries can be
modified to create the same induced velocity profile [Ref.24:
p.69]. Thus, taper and twist are interchangeable to create the
same blade loading. Twist and planform are interrelated by
inflow angle, rotor blade pitch angle and chord, and azimuth.
Since this is a point-design for hover, the inflow will be
polarly symmetric and there will not be any azimuthal
dependency between twist and planform.

It can be shown that little difference exists between a
full 1linearly tapered rotor blade and a blade that is
partially linearly tapered over the outboard half [Ref.22:
p-97}. Since the outboard sections ¢of the blade contain the
majority of lifting surface, this result makes intuitive
sense. Therefore, it was decided to use a partially tapered
rotor blade.

It was also noted that if the taper were designed
effectively, the Reynolds number could be held close over the
outboard section. This represented a different approach to
designing blades. A quick estimation of induced velocities

revealed velocities on the order of 2 to 3 feet per second.
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This would compare to induced velocities on the order of 35
feet per second for a large conventional helicopter. 2
hovering conventional rotor has roughly an 8% to 12% increase
in power-required due to an increase in induced drag as a
result of nonuniform inflow [Ref.25: p.61). However, with such
low induced velocities it was assumed that the losses from a
less-than-optimum inflow distribution would be minimal.
Tailoring the rotor blade local chord-Reynolds-~number to
optimize local airfoil performance might bring sufficient
performance returns to offset the loss in efficiency from a
non-ideal induced velocity profile.

Designing the rotor blade so that the local Reynolds
number remains nearly constant would allow use of one airfoil
over the entire rotor blade and simplify construction. As the
Daedalus airfoils represented the best overall airfoil
available , it was desired to center the Reynolds number
around one of those airfoils’ design Reynolds number (250,000,
375,000, or 500,000).

After considerable experimentation, the planform shown in
Figure 11 was arrived at. The planform represents the geometry
that gives the lowest power-required to generate 250 1lb of
thrust out-of-ground-effect (0GE), and maintains the Reynolds
number within 86,000 of 500,000 along the ocuter half of the
blade. The Fortran program used ¢to éompute the hover
performance is presented in Appendix F and will be referred to

as the Performance Program. As the rotor blade design was
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designed to performance criteria, further details into the

rotor blade design are presented in Chapter 1IV.
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Figure 11. ROTOR BLADE PLANFORM
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4. Tip losses

Three-dimensional loss effects at the blade tips are
typically modelled using a tip loss factor "B" where the blade
is assumed to generate lift out to the radial position B*R.
Tip losses are caused by two factors: spanwise flow around the
tip of the blade and interaction between the blade tip and the
vortex from the preceding blade. Thus, tip 1loss factors
traditionally take two forms: as a function of the tip chord,
and as a function of rotor geometry. [Ref. 26: p.69]

Johnson [Ref.25: p.59] offers several commonly wused

formulas. The first, by Prandtl is:

p=1- ¥ - (7)

|

where: C; = rotor thrust coefficient
b = is the number of rotor blades
Two similar formulas by Wheatley and Sissingh respectively

are:
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B=1- S (8)
and,
2Cpy
B=1—-—?g—’ (9)
Tip loss is proportional to the strength of the trailing
tip vortex. The tip vortex results from roll-up of the
trailing vortex sheet into a tip vortex. The trailing vortices
are proportional to the rate of change of bound circulation
(dI'/dr) [(Ref.25: p.76]. Since the bound circulation for a
blade of a conventicnal helicopter is much higher than this
HPH rotor blade (which is of comparable size), and dI'/dr is
much smaller than for a conventional helicopter, it is
expected that the tip losses will be smaller than might be
calculated by any of the above means. In order to be
conservative, the blade tip loss factor by Prandtl was used.
It still has been proven to be an accurate tip loss factor,

yet it gave the least amount of tip loss.




IV. PERFORMANCE

A. HOVER PERFORMANCE
1. Hover power calculations
Several fundamental assumptions were made in the initial
performance calculations. Durinog the initial phases of design,
3izing and performance estimates, hover power calculations
were made for the 3-meter height hover condition. This was
considered to be out of ground effect. This assumption was
made due to the low disk loading ¢f the HPH rotor. In normal
practice, out of ground effect 1s taken at a one rotor-
diameter height. Typically, graphs generally indicate that
ground effect would provide significant benefit on hover
performance. In this case, the extremely low induced
velocities were assumed to negate ground benefit. This also
represented a worst case scenario and yielded conservative
estimates.
The rotor speed is slow enough that it was assumed that
the inflow from the preceeding blade will have decayed to a
negligible magnitude by the time the trailing blade arrives.
Thus, the pitch angle was deemed equal to the angle of attack.
The influence of the inflow from the upper blade will cause a
momentary reduction in the angle of attack as it passes over

the lower blade. However, for the sake of simplicicty in *the
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initial design, inflow on the lower blades was neglected. The
validity of these assumptions will be evaluated later.

Initial hover power estimates were from the Performance
Program which makes use of blade element theory. The program
assumes a linear taper over the outer one-third of the blade
and constant chord over the rest of the blade with a 3-foot
offset. The program also calculates two tip loss factors (B)
and uses the larger one (least amount of tip losses). User
inputs are rotor radius, root chord, tip chord and rotor RPM.
Program output is blade station, chord, and Reynolds number
into a data file, "Reynold.Dat." Thrust, in-plane drag and
induced velocity versus blade station are input into files
"Thrust.dat", "Drag.dat" and "Indvel.dat", respectively, for
plotting.

The tip loss factor generated by the program for the final
configuration was 0.965, yielding an effective blade length of
34.74 feet. The rotor blade was divided into 30 sections of
1.2 feet each so that the outboard section corresponded to the
length of rotor blade which was truncated.

The final blade geometry selected was:

s Rotor radius - 36 ft
s Root chord - 4.5 ft
* Tip chord - 2.5 ft

* Rotor speed - 8 rpm
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The rotor blade design was Dbased primarily on two
criteria: keeping the chord Reynolds number fairly constant
over the outer half of the blade, and the minimum diameter to
keep the power at or below 1.5 hp. The goal during the design
process was to keep the chord Reynolds number within +/-
100,000 over the outer half c¢f the rotor blade, enabling the
use of one airfoil. The final design keeps the Reynolds number
within 86,000 of 500,000 (which is the design Reynolds number
of the DAE 11 airfoil). A table of data showing the Reynolds
number versus the blade station is presented in Table B-1,
Appendix B.

The rotor blade configuration above results in the

following performance:

* Total thrust - 250 1lb
* Power required - 1.53 hp
* Tip speed - 30.5 fps

* Tip loss factor - 0.965

The tip loss factor closely correlates with that used for
conventional helicopters which is often taken to be a constant
0.97. The taper ratio was used primarily to keep the Reynolds
number as constant as possible. Of all of the rotor blade
parameters, the rotor radius has the single greatest effect on
aircraft performance. Several rotor radii are presented in
Table II to get a feel for the relationship between radius and

horsepower required to generate 250 lb of thrust for a blade
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with the same relative geometry (1.8:1 linear taper over the

outboard 33%). It can be seen that the relationship between

rotor radius and power required is linear at 0.0167 hp/ft.
Table II. POWER REQUIRED TO

GENERATE 250 LBS OF THRUST FOR
VARIOUS ROTOR RADII.

ROTOR RADIUS POWER
(ft) (hp)
28 1.74
32 1.63
36 1.53
42 1.43

L e e

2. Vortex lattice method

The vortex lattice method (VLM) described in (Ref.28:
p.271] was used to calculate the lift over the rotor blade.
Only one chordwise horseshoe-vortex was used. The Fortran
program used 1s presented in Appendix F. The vortex
distribution is presented in Figure A-1, Appendix A. The same
basic airflow assumptions as fcr the blade el ment program
were made in the vortex lattice program. The final geometry
from the blade element method was used and a total lift of 71
lb per blade (284 1lb total) was calculated. This represented
an 11% increase in lift over the blade element method. The VLM

lift distribution 1is plotted along with the blade element
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method in Figure A-2, Appendix A. A table of circulation
versus blade stations is presented in Table B-2, Appendix B.
The VLM is presented as a separate method to verify the
results of the blade element method. The VLM method is assumed
to be less accurate and is not used for primary performance
calculations. However, the 1lift distribution is much more

accurate and will be useful for structural considerations.

3. Approximation accuracy
a. Pitch angle equal to the angle of attack

This section will make some simple flow models and
estimate the degree to which some of the basic assumptions
were valid. The assumption was made that the pitch angle was
equal to the angle of attack. This implied that the induced
velocity of the 1leading rotor blade will decay to
approximately zero before the next blade arrives at that
azimuthal positicn. Or, from another perspective, this
assumption says that each blade is moving into "“clean air,"
that is, air undisturbed from the previous blade. To estimate
the wvalidity of the assumption, assume that the trailing
streamlines are that of flow over a rotating cylinder where
the diameter is equal to the chord. The equation for the

radial velocity around a cylinder is given by:
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2
Vo= - (1 + _f_z) V.sin@ - zf;r (10)

If the tip path plane is considered as 6=0 then V4 is

the induced velocity, and the induced velocity becomes:

v, = -1 (11)

The negative sign implies that with a positive
circulation the tangential velocity is clockwise for flow from
the left, and that the induced velocity is in the downward
direction.

A graph of induced velocity versus rotor blade station
is presented in Figure A-3, Appendix A, and is typical of a
conventional rotor blade profile. The maximum induced
velocity of 2.1 fps occurs at 25.27 ft which corresponds
precisely to 0.7R. Since a lower blade has an upper blade pass
over it four times every revolution, there will be one-quarter
of an arc of distance behind the lower blade until the next
upper blade passes over 1it. At 0.7R, the one-quarter arc
distance will be 39.6 ft.

At 0.7R, the calculated induced velocity is 2.1 fps
and using equation 3 above with a radius of one-half of the
chord, the circulation is 29.7sqg ft/s. This compares to a
value of 33.6 sq ft/s, which was calculated for the VLM. As
the VLM calculated 11% higher lift, a highér circulation from
the VLM would be anticipated (111% of 29.7 is 32.9). Using the

value of circulation calculated from the induced velocity
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(I'=s29.7 sgft/sec.), at 79.2 ft behind the blade (two times the
quarter—-arc distance of 39.6 ft) the induced velocity (v;)
becomes 0.060 ft/sec when the next blade passes under it. The

inflow angle becomes:

¢ = 53_= 0.16degrees (12)

The rotor blade pitch angle can be trimmed to operate at
an average angle of attack closest to the optimum power factor
so the induced velocity will not adversely affect the 1lift
generated. Rather, it will mean that the blade will be tilted
aft slightly (0.16 ), increasing the component of the 1lift
vector in the in-plane (drag) direction. This calculation is
based on the largest induced velocity and is small enough to
be considered insignificant with respect to the anticipated
torsional flexibility of the rotor blades.

b. Inflow on the lower set of rotor blades

To obtain an estimate of the effect of the previously
neglected inflow of the upper rotor on the lower rotor blades,
several simple approximations will be made based on the
induced velocity of the upper set of rotors. The results will
then be applied to the performance program and compared to the
originally calculated performance.

Induced air flow passes through the tip path plane at
an induced velocity of v,. The flow necks down and the inflow

increases to 2v, at one rotor-diameter below the tip path

50




plane. The lower set of rotors will be as close as possible
below the upper set of rotors, so the increase in induced
velocity due to the necking down will be assumed to be
negligible.

At 0.7R, where the highest induced velocity is
located, a rotor blade passing below this blade will be

momentarily subject to an inflow angle corresponding to:

¢ = tan"1 (¥; = 5.7degrees (13)

which will effectively reduce the angle of attack by that
amount .

To get a feel for the added power required due to the
inflow from the wupper rotors, a simple flow model is
generated, the increase in pitch angle to overcome the inflow
is calculated, and the value of that increased pitch angle is
put into the performance program to provide an estimate of the
additional power regquired.

Assume that as the leading edge of the rotor blade
passes over the lower blade the effective induced velocity

increases exponentially according to:

vilx) = v, (1-e™ (14)

1

until the full induced wvelocity is reached at the trailing
edge of the airfoil. This 1is an assumption based on the
induced velocity buildup for a suddenly applied angle of

attack on an airfoil [Ref.29: p.4). After the trailing edge
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passes the lower rotor blade, the induced velocity decreases
according to that o¢f a cylinder of diameter equal to the

chord. The complete formula to calculate the induced velocity

becomes:
vi(x) =v, (1-e™ O0sxsc (15)
v,(x) = -Zir c<x<39.6 (16)

Integrating over the entire quarter of arc and
dividing by the length of the arc to find the average induced

velocity yields:
vy,, = 0.416fps (17)
Using equation 13, the average inflow angle becomes:

¢, = 1.61 degrees (18)

Again, this implies that the lower set of blades will
have to have the pitch angle increased 1.61 degrees to operate
at the same average angle of attack. Adding the increased
inflow angle to the pitch angle will tilt the 1lift vector
further aft resulting in a higher in-plane drag. Adding the
increased inflow angle to phi in line 84 of the performance
calculation program will increase the pitch angle on all four
blades. With phi equal to 1.68 radians, the program calculates
an increase in power required from 1.53 hpvto 1.82 hp. Since
only half of the blades will show an increase, the average of

the two results in a power required to hover of 1.68 hp. This
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represents an increase in power required of 0.15 hp, or a 10%
increase,

A power increase of 10% represents a noteworthy
increase. However, it will be seen that it is not too
significant when compared to the variables associated with

ground effect.

B. GROUND EFFECT

1. Theory

Ground effect is defined as a reduction in induced power
due to proximity of the ground. It is characterized by a
reduction in induced velocity required to produce a given
thrust. A plot showing induced velocity ratio as a function of
normalized rotor height is presented in Figure 12.Since the
induced velocity 1is reduced in ground effect for the same
thrust generated, the blade can operate with the same angle of
attack at lower pitch angles. The reduction of pitch angle
results in less rearward tilt of the 1lift vector, and
consequently a reduction in the induced power from that
required out of ground effect. Height above the ground is
typically referred to as Z2/D, where Z is the rotor height and
D is the rotor diameter.

The difference in power required due to ground effect
becomes:
Where: v,=induced velocity

Source: [Ref.25: p.67]
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Ah.p. = Vo (1~ Viser (19)
550 Vio

Betz (1937) obtained a ratio for power in ground effect

for Z/R « 1 [Ref.25: p.123] where:

Prce Z
=9 % 20
2 R (20)

Ground effect is also depicted uéing the ratio of thrust-
generated—in—grouﬁd¥éffect to the th;ust—generated—out—of—
ground-effect (for constant power) versus normalized rotor
height (2/D). Figure 13 presents such a graph.

Recent investigations by Cal Poly students have shed some
light on this unexplored regime of flight,>and resulted in the
"Cal Poly Model Test Point" on the classic graph. Tests show

a continued reduction in induced velocity well below where
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most graphs and data go. This is shown on Figure 12, above.
This implies that at very small 2Z/D, rotor drag becomes
primarily profile drag.

Interestingly, tests at Cal Poly by Baker and Scarcello
show increased ground effect over rough surfaces. Hence, when
the Cal Poly team was attempting to achieve the world’s first
human-powered helicopter hover, they put relatively large
cardboard fences on the floor in an attempt to increase the
"surface roughness" of the gym floor and take advantage of
this surface roughnéss effect. [Ref.ZQE p.6]

With the exception of recent studies at Cal Poly, there
has been little, if any, research on helicopter rotors deep in
ground effect. The standard configuration of most helicopters
places the rotor already at Z/D of roughly‘0.2 when sitting on
the ground. This has probably obviated the need for studies of

ground effect below that zZ/D.
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2. Ground Effect Calculations

a. 3-meter height

The initial hover power calculated assumed that at the
3-meter height the rotors were out of ground effect. For a
preliminary rotor height consideration, assume that the rotor
blades will be co-located 5 ft above the bottom of the HPH.
The rotor height at the competition 3-meter height requirement
then becomes approximately 15 ft and Z2/D=0.21. Entering Figure
13 shows a thrust ratio of 1.26. This indicates a 26% thrust
improvement for a given power over the true OGE calculation.
If this condition held true, the power reqi:'red to hover at
the 3 meter height would be 1.33 hp.

Assuming that the two sets of rotor blades are 4 feet

apart, then:

i% =0.24 (21)

\IIH
Njw

=0.18
lower upper

oliN
LN

and

T.R. jovey = 1-27 T.R. pper = 1.24 (22)

uppe
showing that there might be a 3% differential thrust for a
blade separation of 4 ft with airframe height of 3 meters.
Within the accuracy of the theory, 3% 1is not deemed
significant and will be disregarded for IGE performance
calculation purposes, but will be important for control

purposes.
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Entering Figure 12 with Z/D of 0.21 gives a value of
the induced velocity ratio of 0.7. Equation 19 assumes that
the induced velocity 1is constant over the blade, so the
average 1induced velocity generated from the Performance
Program will be used to calculate ground effect. Using average
induced velocity of 1.67 fps, the Ahp is 0.23 hp, and the
power required to hover IGE becomes 1.30 hp.

b. Deep In Ground Effect

Using Betz’s formula with the true OGE hover power

calculation and the added induced power on the lower set of

blades:
- Z _ 6 _
Proe = (Pocs)z—é = (1.68) (2) (75) = 0.56hp (23)
Using:
Z 6
_ T —— =, 24
D 72 0833 (24)

the hover situation approximates the "Cal PFoly Point"™ on
Figure 12. The ratio of induced velocities is 0.05. Using the
average induced velocity (provided by the Performance Program)
of 1.67 fps, the Ahp is 0.72 hp; making the power-required to
hover IGE 0.80 hp.

c. Summary of Ground Effect Calculations

The basic assumptions made in calculating hover power
were: the inflow from a rotor blade will héve decayed to zero

at the trailing blade; inflow effects on the lower set of
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Takble III. SUMMARY OF HOVER POWER CALCULATIONS FOR HPH.
e

ASSUMPTIONS POWER (hp)

--3-meter height—-

Basic assumptions, true OGE. 1.53

Basic assumptions, inflow effects on the
lower set of rotors, OGE. 1.68

Basic assumptionns, inflow effects on lower
rotors, IGE using Figure 12. 1.30

Basic assumptions, inflow effects on lower
rotors, IGE using Figure 13. 1.33

~--Just clear of the ground--

Basic assumptions, inflow effects on lower
rotors, Betz’s formula. 0.56

Basic assumptions, inflow effects on lower
rotors, "Cal Poly Point." 0.80

L ]

rotor blades were neglected; and the 3-meter hover height was
out of ground effect. The Prrformance Program calculations
were based on blade element theory and used the tip 1loss
formula by Wheatley. A summary of hover performance

calculations is presented in Table IITI.

C. STABILITY AND CONTROL

The importance in having an aircraft that is controllable
is critical to this competition. It will not be possible to
build an aircraft with the inherent stability to meet the
requirements of the Igor Sikorsky Award. Just as the

introduction of the swashplate enabled Igor Sikorsky to obtain
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satisfactory control and achieve the first truly successful
powered flight of the VS-300 helicopter in 1939, the "control
problem" must be accounted for in the HPH design. As was seen
in the introduction, it was controllability that allowed the
Gossamer Condor to become the "first" human-powered aircraft.
In their case, the unstable nature of their design was not a
problem, as the controllability characteristics were such that
the pilot could easily maintain steady flight. During the Da
Vinci’s 7-second world-record flight, it appears that the
pilot could have easily flown longer, but the aircraft was
becoming increasingly unstable and in imminent danger of
crashing. A controllable aircraft is paramount to a successful
human-powered hover, and winning the Igor Sikorsky Award.

1. Controllability

"Controllability may be defined as the capability of the
helicopter to perform, at the pilot’s desire, any
maneuvering required in a particular mission. The
characteristics of the airplane should be such that these
maneuvers can be made precisely and simply with a minimum
of pilot effort. [Ref.32: p.2-21"

In this case the "mission" is to maintain a hover within
the prescribed area and maintain a constant heading for one
minute. It can be seen from this definition of
controllability, that if the aircraft is unstable but easily
controllable, the flying qualities could still be satisfactory

for the mission. Today’s powered helicopter (without automatic

stabilization) is in this control category.
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2. Static Stability

An aircraft is statically stable if it tends to return
toward its original trimmed condition when disturbed from an
equilibrium condition [Ref.32: p.3-3]. An aircraft is
dynamically stable if it returns to an equilibrium condition
on its own if disturbed from trim ([Ref.32: p.3-4]. Both
definiticns are open-loop conditions, whereby the controls are
left in the trimmed position and the pilot does not make any
inputs to correct the aircraft attitude.

An aircraft can be statically stable but dynamically
unstable. An example would be an oscillatory motion of
increasing amplitude called "oscillatory divergent"™. It tends
toward returning to trim but overshoots by an increasing
amplitude each cycle. To be dynamically stable, the aircraft
must be statically stable.

Positive damping is that characteristic of a system which
opposes transient motions and results in decreasing cyclic
amplitudes (for oscillatory motion) or decreases a rate of
motion [Ref.32: p.3-5]. Negative damping 1is unstable.
Classically, a damping force or moment is proportional to
velocity, and in some non-linear cases to (velocity)?. Hence,
roll damping is the moment which opposes a roll rate and
causes the aircraft to stop rolling once the controls are
returned to neutral. |

Light, large aircraft such as human-powered aircraft have

low inertia and very high damping compared to conventional
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aircraft. The pitch damping of the Gossamer aircraft was high
enough that the maximum rates that could be developed (if
allowed to diverge) were so small that they were easily
compensated for by the pilot. If an aircraft is unstable, it
is important that adequate control margin is available to be
able to control the aircraft.

Associated with unsteady aerodynamics, there is an inertia
force referred to as "apparent mass." When accelerating a wing
perpendicular to its direction of motion, it is necessary to
accelerate not only the wing itself but the air surrounding
the wing as well. For a high aspect ratio .ng, the apparent
mass is equal to the mass of a cylinder of air with a diameter

equal to the local chord. For the rotor blade design proposed:

2
Ctt It

C
2

2 1 Ccip 2
AM =z ( ) (24)p,,1,+—2~n[( ) +(——2—) ] (12) p,y, = 38.81b

Each rotor blade weighs approximately 20 1lb. Thus, the
apparent mass nearly doubles the inertia of the rotor blade.
Despite the increased inertia, Drela [Ref.8: p.104] showed
that roll damping still dominates the roll response in human
powered aircraft.

A generic helicopter in a hover will be statically stable
with regard to translational velocity [Ref.22: p.283]. That
is, if the trimmed hovering aircraft is displaced in roll it
will not generate a restoring moment until a translational
velocity is developed which causes blowback which generates a

restoring moment. If allowed to continue unchecked in a
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conventional helicopter, the motion results in a dynamically
unstable oscillatory divergence [Ref.23: p.603]. In a HPH, the
pitch and roll damping are so high that large rates cannot
build up. It is anticipated from dimensional considerations
that this HPH will be statically stable as well. If allowed to
start, an oscillation in pitch or roll would be of limited
amplitude due to the limited pitch/roll rates. However, the
aircraft would tend to "slide" sideways into the ground. As
such, it will be imperative that a control system be
implemented to keep lateral and longitudinal translational
velocities to zero.

3. Lateral and Longitudinal Control

It is proposed that a side force generator rather than a
roll moment generator be used to control the HPH. The basis
for this proposal is the trouble exhibited by past human-
powered aircraft in roll control. There will be very little
difference between roll and pitch for this aircraft, so "roll"
will be used to imply either pitch or roll. The wings of past
human-powered aircraft have been so flexible that conventional
aileron control has been ineffective. For turns, the Gossamer
series used a canard as a yaw force generator to generate
differential wing 1lift and consequently a roll moment. The
Daedalus team was unable to make an effective aileron system
so they used the rudder and the dihedrél effect to make

shallow turns.
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Rotor blade winglets on the upper set of blades are
proposed as the means of generating a side force. By
cyclically varying the angle of incidence of the winglets a
side force can be generated and used to control position over
the ground. If designed correctly, winglets may also have the
added benefit of reducing tip losses.

4. Directional Control

Heading control will also be necessary to win the
competition. Torque differentials between two rotor blades
caused by inflcws, non-linear ground effects, and winglet
inputs will cause the pilot to rotate with reference to the
ground. Conventional heading control for counter-rotating
rotors is by differential collective inputs to the two rotors.
Heading control for this HPH is proposed by changing the
torque on the upper rotor only. This can be performed by
changing the total 1ift on the upper rotor. The rotors can be
finely tuned so as to be in torque balance for one flight
condition, thus requiring only small inputs to maintain
heading as hover conditions vary. Lift change on the upper
rotor can be accomplished by either a small flap-type control
or by blade pitch change.

The co-axial design has an inherent stability advantage
over a two-bladed helicopter in that it has polar moment of
inertia symmetry between X and Y axes. For the Da Vinci,

I.>1 The extremely small moment of inertia about the

Yy *©
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feathering axis resulted in the helicopter pitching about the
main spar (feathering axis) and falling over.

5. Collective Control

The most simple means of controlling thrust (for height
control) is by varying rotor speed. It has the advantage of
eliminating mechanisms required to feather the blades and
thereby reducing total airframe weight. Some radio-controlled
helicopter models have been very successful in using this
technique to eliminate the conventional collective control.

6. Energy Storage

An investigation was made into using the inertia of the
rotor blades to store energy. If a system were derived whereby
the blades could be held at the zero lift angle of attack, the
blades could be accelerated to above the design speed and the
energy in the rotor inertia could be used to help lift the
aircraft to the 3-meter height immediately after takeoff.
Considering only the inertia of the rotor blades, the total
inertia is the sum of the two sets of blades where the blades
are assumed to have uniform mass distribution. The moment of

inertia of a long uniform rod rotating about the middle is:

1
I = —ml? 26
w12 (26)
where for this case: m = 40 1b
1 =72 ft
and
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I, = 17,820 lb-ft? (27)

The energy required to lift 250 1b to 3 meters is:

P.E. = mgh = 80,500
52

The kinetic energy in the rotor system is:

SZ

K.E. = (2) %—Iwz = 12,514
Assuming the rotor blades will need to be at the design
operating rpm at the top of the climb, the total energy needed
to be stored in rotor inertia at flat pitch is the sum of the
potential energy required to climb to 3 meters and the kinetic
energy of the rotors at the design condition. The total energy
required at flat pitch is:

fe2-1b (30)

Erorar = 93,014 25—

Solving for the rotor speed required at flat pitch:

w=2.18—;—:—g=20.8 RPM (31)

This would present a problem in that the pilot would be
required to pedal at 234 rpm (without any variable gear
ratio), an unrealistic speed.

If the maximum flat pitch rotor rpm were limited by
profile drag, and a limit of 1 hp were set, then a maximum
rotor speed could be calculated using the Performance Program.

Unfortunately, airfoil data are only available to 0 degrees
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angle of attack (as opposed to the zero-1ift angle of attack).
The prcgram gives 9.3 rpm at 1 hp; buﬁ 125 1b of thrust is
still being generated. Regardless, it will not be possible to
achieve a rotor speed of 20.8 rpm!

For argument sake, it will be assumed that a rotor speed
of 12 rpm would be able to be generated by placing the rotors
at the zero-lift angle of attack. Then, by increasing the
blades’ inertia using tip weights it would still be possible
to achieve the added energy at minimum pitch. Solving for the
weight necessary to do this results in 34 1lb. tip weights--
obviously an unrealistic proposition as the power required to
hover deep in ground effect with the extra 132 lbs is well
above human power capabilities.

In conclusion, the high rotor blade profile drag prevents
a high minimum-pitch rotor speed and precludes any effective
use of the rotors as a means for storing energy. There would
be no advantage in adding tip weights, and no reason to add
the capability to feather the rotor blades for energy storage

purposes.
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V. FINAL CONFIGURATION

A. CONSTRUCTION

The design of an HPH 1s a relatively simple operation
compared with monumental task of building the HPH.
Construction will command an extraordinary amount of manhours,
require innovative thinking and use of materials not normally
used in the aerospace industry. It may be possible to make use
of some of the local high school or college students to help
construct the aircraft in exchange for science credits. In the
attempt to construct a light, strong aircraft, past teams have
required a large amount of trial and error in construction
techniques. Mr. P. Zwann, builder of two (unhoverable but not
unsuccessful) human-powered helicopters, said that probably
the best advice he could give was to "...sketch with your
materials. [Ref.33}"

As in all arenas of scientific endeavors, progress is made
by building upon others’ past discoveries, research and
development. Through exhaustive research it is hoped that the
lessons of past mistakes of human-powered aircraft designs and
construction will be learned and not repeated here. This
section will discuss some of the construction methods and

materials necessary for construction of this HPH.

67




B. MAIN SPAR DESIGN

1. Composite Technology Background

Composites have been use?d in aircraft in the form of
plywood since the early days of aviation. Advanced composites
have allowed significant structural advantages for human-
powered aircraft. Good composite design <can allow a
significant weight savings over other materials and result in
a stronger and stiffer structure. Furthermore, it is possible
to do much of the composite censtructicn at the NPS without
having to rescrt to a commercial composite outfit. For
example, a gentleman named Juan Cruz (who is now a composite
specialist for NASA) hand built the spars of the Daedalus
aircraft using pre-impregnated unidirectional graphite-epoxy
tape [Ref.2: p.97].

Part of the purpose of this HPH project is to promote
various aspects of aeronautical engineering. The use of fiber
re-inforced composites has been called the biggest technical
revolution in aviation since the jet engine [Ref.34: p. 85,90
and 91]. Composite design and construction is becoming an
integral part of naval aviation, and as such should be
understood by all aeronautical engineers. With some easily
constructed facilities at the NPS, it would be quite possible
to build the rotor blade spars required for this HPH.

To determine the feasibility and reliability of a hand

layed composite section, information from a NASA report
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regarding cylinders tested in strictly compression is
presented. The report tested HS-4 graphite and 3502 epo..y
cylinders with different lay-ups. Despite only reporting on
compression test samples, there should be no reason that the
quote would not apply to cylinders in combined loading. "A
comparison between filament wound and hand laid-up tape
control cylinders indicates there is little or no difference
in the response of <cylinders constructed using the two
manufacturing techniques." [Ref.35]

A composite consists of two or more dissimilar elements
compined on a macroscopic scale to create a material
exhibiting properties that neither has of its own. The
material comprising the composite are termed the
"constituents." For ©purposes of this paper, the term
"composite" will imply a fibrous composite. A fibrous
composite consists of fibers in a matrix. The fibers are long
and continuous, and can be woven or unidirectional. The matrix
is the substance that binds the fibers together and serves
many purposes; among them to add structural support, transfer
stresses, and to protect the fibers. The composites can be
layered with the fibers in different directions, and the
composite becomes a "laminated fibrous composite." [Ref.36:

p.2-5]
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2. Composite Tube Construction

Cylindrical composite tubes are created by wrapping the
composite around a form called a "mandrel." Two main methods
are used. Where the facilities are available, tubes are
generally constructed using a technique called "filament
winding." Here, an individual fiber is coated with a matrix
and wound in pre-determined directions, and layers, around a
mandrel. The other method is to use pre-impregnated tape
called "pre-preg" which comes in rolls or sheets and is
wrapped around the mandrel in the same manner as filament
winding. Filament winding is generally used for highly
automated production, and pre-pregs are frequently used for
small batches or one-of-a-kind construction. The composite
shrinks upon curing, and extraction of the mandrel becomes
difficult. A common method is to etch a groove through the
tubular metal mandrel with acid, allowing the mandrel to
compress and be easily extracted.

3. Composite Material Selection

In determining the constituents, several factors need to
be considered: strength-to-weight ratio, stiffness, and
cost/availability.

Graphite represents a strong, stiff and relatively cheap
fiber and is probably the most suitable for construction of
the main spar. Graphite-epoxy pre-preg uhidirectional tape

represents the most suitable composite material. In
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determining the directions of the individual lamina, called
the lay-up, the blade loading will be needed. The thrust and
drag have been previously been presented, but the pitching
moment has not. The moments are generated by the Performance
Program (Appendix F) and the data output to a file
"moment .dat." Note that the pitching moments are negative,
indicating a leading edge down pitching moment.

Much of composite strength and reliability i1s dependent
upon the manufacturing process. It will be necessary to build
and test specimens in order to refine the design and
fabrication process. The spar is essentially a torque tube
with longitudinal structural re-inforcement on the top and
bottom. The Daedalus used smaller tubes bonded to the top and
bottom as tension and compression members. The Da Vinci used
a lamina running axially (lay-up angle of 0 degrees) on the
top ani bottom to serve the same purpose.

There exists a flat, unidirectional 1laminate used by
makers of skiis and composite bows that may be suitable as the
spar tube cap. Sold by Gordon Plastics in Vista Ca., it is
called "Spar Tuf" and comes pre-cured and ready to be bonded.
It has been tested in both tension and compressicn to 150,000
psi.[Ref.37: p.9-4)

4. Bending to Torsion Coupling

The spar can also be designed to incorporate bending to

torsion coupling. This would have two advantages. The first
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would be to counter the pitching moment. The second would be
to serve as an effective collective control to increase the
pitch angle as more lift is generated and the blades flex up.
Thus, at low speed, the bladecs would be at a reduced angle of
attack and require less torque to accelerate the rotcr system.
As the lift increases, the blades flex up, and the pitch angle
will increase until equilibrium is reached whereby the airfoil
is operating at the design angle of attack. Either a section
at the root can be designed with bending to torsion coupling
s0 the entire spar twists a constant amount, or the the
coupling can be incorporated into the entire blade, inducing
blade twist. The former is equivalent to the well knowr. delta-
3 hinge built into rotor blades for pitch-flap coupling.
Refinement of the spar design is beyond the scope of this
report and is left for follow-on work. The intent is to show
that design and construction of a graphite-epoxy spar is well

within the capabilities of the NPS.

C. ROTOR BLADES

This paper has used the helicopter terminolcrgy of rotor
blades, when in fact they are more correctly termed "rotary
wings" as strutural rigidity is achieved through a
cantilevered spar rather than from centrifugal forces. The
Cheyenne and ABC helicopters also had cantilevered rotor
blades like this. It gave rise to the term "rigid rotor."” That

term was considered incorrect, which 1led to the term
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"hingeless rotor." Hence, construction methods will be similar
to wings of past human-powered aircraft. Construction of the
spars was addressed previously and will not be discussed in
this section.

The rotor blades will be constructed using a tubular
composite main spar with lightweight ribs, and covered in a
thin polyester film. Ribs can be fabricated from low density
(2 1b/ft?) foam and structural support added as necessary. One
source for sheet foam is Ref.38. The foam ribs can be backed
with paper, or supported with flat composite strips glued to
the sides. The leading edge of the rotor blade should have a
rigid sheet of material wrapped around it to add rigidity to
the skin along the portions of the airfoil with a high (or
low) co-efficient of pressure to prevent excessive airfoil
defcrmation.

The polyester~film skin can be made of 0.5 mil Mylar
(manufactured by DuPont) which has been used successfully in
past human-powered aircraft. Information on Mylar is provided
in Appendix G.

The rotor Dblades need to be designed for easy
transportability and set-up. The blade could be designed into
three sections of 12 ft each, with the two inboard sections
all being constant chord. The criterion for spacing of the
ribs is unknown and will probably be a function of the ease of
tensioning and heat shrinking the Mylar. The spacing will most

likely have to be determined after materials can be obtained
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and a test section constructed. Adhering the film to the ribs
can be easily done using a spray glue made by 3M called Spray
77 [(Ref.33].

The support structure for the pilot, termed the
"undercarriage, " should also be made from composite tubing for
maximum strength~to-weight ratio. The undercarriage includes
the "landing gear" structure that provides some degree of
protection by absorbing energy during landings and a means for
the aircraft to stand upright.

The mast and rotor blade hubs shall also be fabricated
from composites. Bearing races can be fabricated in the NPS
workshops form metal. The hollow mast will allow control
tubes/cables to pass through to the upper rotor blades. A
scheme to allow pilot azimuthal control of the winglets for
lateral/ longitudinal control needs to be devised in future

design refinements.

D. DRIVE TRAIN
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Past histories of human-powered aircraft have shown the
drive train to be a neglected yet crucial element in the
design and development of human-powered aircraft.
Conversations with builders of two human-powe:ed helicopters
have confirmed this conclusion ([Ref. 33 and 3%8]). The

characteristics of a successful HPH drive system are
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reliability, light weight , ability to withstand high torques,
and simplicity.

Human power studies have shown pedalling to be the
preferred method for this application. Hence, standard bicycle
components should be used as they have several distinct

advantages:

* They are proven to work as intended.

e They come in standard sizes and are eacily interchangeable
to obtain the optimum system.

» They could most likely be obtained gratis; either from
local shops or the manufacturers.

« They can easily be modified (drilled out) to be made

lighter.

* Many cyclists (potential pilots!) prefer certain gear
(pedals for example) and can be easily interchange their
own gear.

* Chain wheels can be easily changed to alter the main rotor
drive gear ratio.

Further work on the ergometer may offer more information
regarding the optimum crank system. In reality it will most
likely be the pilot’s choice/preference. The choice to use
conventional bicycle components will offer advantages over
custom designed equipment and should be considered.

The chain will be required tc twist 20 degrees to operate
in the same plane as the rotor shaft. A flexible chain is
commercially available [Ref.40: p.A8Q] whiéh is particularly
suitable. Called POW-R-CHAIN, it has a 1/2 inch pitch and 1is

compatable with standard bicycle drive gears. Made of
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polyester rollers fixed to wire cables, it has a tensile
strength of 300 lb and weighs only 1 ounce per foot.

Large torques are required on start-up, and a drive system
is required to be able to withstand these large forces. The
proposed bicycle crank/chain drive system is proven, simple
and lightweight. The only disadvantage ¢f a chain-drive system
is the requirement for feeder slots for the chain going onto
the gear.

2. Reversing Mechanism

Again, a robust drive system that is simple and
lightweight 1is desired. The proposed reversing mechanism
effectively combines these elements. A drawing of the
reversing mechanism is presented in Figure H-1, Appendix H.

The rotor mast is centered about a main, stationary mast
to which the undercarriage is fixed. Around this mast are two
identical sleeves each of which serve as the rotor hub. Where
the two sleeves meet, they are interconnected by an idler
wheel. As the bottom sleeve rotates, the idler wheel will turn
the upper sleeve at the same speed, except in the opposite
direction. A bevelled pinion gear and ring gear will
effectively accomplish the intended Jjob. Available from
commercial sources, they will have to be sized upon completion

of the exact drive train design.
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E. SUMMARY OF FINAL DESIGN

A summary of the design, dimensions

parameters is presented below:

COMPLETE HELICOPTER

Rotor diameter - 72 ft
Number of blades - 4
Total thrust - 250 1b
Rotor speed - 8 rpm
Planform area — 552 sq ft

Co-efficient of thrust (C;) .0206

ROTOR BLADES

Root chord - 4.5 ft (to 0.67R)
Tip chord - 2.5 ft

Taper ratio - 1.8

Tip speed - 30.5 fps

Tip loss factor - 9.65

11

Airfoil - DAI

POWER
Hp required at 3 meters
Hp required at 3 meters (ground effect)
Hp required at low hover (ground effect)

Power loading (low hover) - 312.5 1b/hp

Pilot pedal speed - 90 rpm

77

and

(no ground effect)

aircraft

- 1.68 hp
- 1.30 hp

- 0.8 hp




A comparison of several rotor parameters is made with

several other human-powered aircraft below:

TIP_ SPEED
This design - 30.5 ft/sec
Da Vinci - 55 ft/sec

Daedalus - 22 ft/sec

WING LOADING

This design - 0.453 1lb/sqg ft
Gossamer Condor - 0.25 1lb/sq ft
Da Vinci III - 0.625 1lb/sq ft

Musculair II - 1.4 1lb/sq ft

Drawings of the HPH are presented in Appendix H.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. BENEFITS OF AN HPH PROGRAM

This paper concludes that a 72-ft diameter co-axial
helicopter can be hovered for one minute on human power. The
construction of a human-powered helicopter and completion of
a one minute hover to win the Igor I. Sikorsky Competition is
well within the capabilities of students at the NPS.
Construction of a human-powered helicopter at the NPS will
have many benefits to the school, aeronautical engineering,
naval aviation, and the Navy in general.

Winning the American Helicopter Society’s competition will
represent a historically significant milestone. As the last of
Leonardo Da Vinci’s ideas to be realized, winning the Igor I.
Sikorsky Human-Powered Helicopter Award will be an achievement
that will assure the school a great deal of prestige within
the aviation and engineering community. The publicity
generated from a successful flight will present a very
positive image for the NPS and the Navy in general.

In addition to the intangible rewards, there will be many
very real and positive benefits with respect to the
Aeronautical Engineering curriculum. One of the most needed
benefits of a program such as this will be the promotion of

the helicopter aerodynamics program at the NPS. The NPS has
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probably the best body of helicopter knowledge of any
educational institution in the world. Approximately one-third
of the aeronautical engineering students are helicopter
pilots. These pilots include graduates of the U.S. Naval Test
Pilot School, undoubtedly the best helicopter test pilot
school in the world; pilots with several thousand helicopter
flight hours; pilots with significant fixed-wing hours as well
as rotary-wing hours; and pilots who were prior aircraft
maintainers. Also included as students are government service
and foreign engineers who are helicopter specialists. With
such an outstanding indigenous body of knowledge, the NPS
should be one of the leading helicopter research institutions
in the world.

The U.S. Army sponsors three universities within the U.S.
to conduct helicopter research. Called "Army Rotorcraft
Centers of Excellence, " these universities include University
of Marylar , Rensselear Polytechnic Institute, and Georgia
Institute of Technology.[Ref.41: p.56] The Navy should
endeavor to make the NPS a similar facility for conducting
helicopter research for naval-related issues.

With all of the composite parts of the HPH, a program to
build an HPH will enhance the composite program and facilities
at the NPS. There is a very real need to educate naval
aeronautical engineers on advanced composite technology. Naval
aircraft of the future, such as the V-22 and the A-X, will

have signiticant portions of the airframe and associated
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components fabricated from composite materials. The school
already has considerably 1less well equipped composite
facilities than other top-scale aeronautical engineering

universities in the U.S.

B. FLIGHT TEST OPPORTUNITIES

Given the nature of the body of helicopter knowledge at
the NPS, the particular strong point is flying knowledge and
experience. A simple aircraft such as an HPH would allow some
simple flight test opportunities without the tremendous
difficulties involved in flying military aircraft. The HPH can
be motorized and hover-power measured accurately for
performance testing. A flight test course is currently taught
within the department, and the aircraft would be an ideal
platform for use in that course. Some of the flight test
subjects possiole for an HPH are presented in the following
subsections:

1. Highly flexible aircraft

Conventional aerodynamics assumes a rigid body; however,
airframes are non-rigid and airframe flexure affects aircraft
dynamic responses. Flight testing of highly flexible fixed-
testing of the Light Eagle that parameter estimation and
computational modeling became much more difficult and

complicated than was previously thought [Ref.42: p.349].
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2. Instrumentation research

Developing ultra-light inflight instrumentation for the
HPH could lead to further developments for flight test or
operational use. The F-18 operational in-flight airframe-
stress-monitoring-system was an NPS by-product and is an
example of the type of instrumentation program that might
originate from instrumentation research on the HPH.

3. Flying Qualities

The HPH can be used as vehicle to teach and study flying
gualities. An understanding of the terms, influences and
variables concerning flying gualities is important for all
pilots.

4. Simulation

In this era of budget tightening, flight time will become
increasingly scarce. As a result, an increased emphasis will
be placed on simulation with respect to earning and
maintaining fleet qualifications. Just as it 1is important for
fleet aviators to know about real aircraft and aircraft
systems, so it is important to know about simulation and
simulators. Creation of a HPH simulator will be a means for
learning and applying those principles. An interdiscipline
subject, simulation incorporates everything from flight test
data to control systems to basic aerodynamics, and creates an

excellent learning and research opportunity.
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C. AREAS FOR FUTURE RESEARCH

1. Low Reynolds number design and test

Even though a previously designed airfoil was used for the
HPH rotor blade, that is not to imply that a better one cannot
be developed. Low Reynolds number airfoil development is a
relatively unexplored field and is in need of research in a
variety of areas.

2. Flexible airfoil design and test

An extension of conventional airfoil design is flexible
airfoil design, where the surface coordinates wvary as a
function of the pressure on the surface of the airfoil at that
point. To carry that concept one step further is to design a
deformable airfoil where the airfoil shape can be modified in
flight to achieve the desired flow characteristics. Research
in perfecting a HPH rotor blade airfoil can 1lead to
development in these fields.

3. Deep in ground effect hover theory

Ground effect theory begins to be difficult to extrapolate
below a Z/R of about 0.2. An accurate ground effect model for
low-induced-velocity rotors deep-in-ground-effect 1is not
available. This is an excellent opportunity to perform classic
aerodynamic research.

4. Tip losses for low induced velocity rotors/wings

Most rotor blade tip-loss models are semi-empirical and

meant to apply to conventional helicopters. Their application
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to very-low—induced-velocity inflows appear somewhat dubious.
Investigation of conventional tip-loss theory to very-low-

induced-velocity inflows is an area for future research.

D. FOLLOW-ON WORK

The present HPH design represents the best configuration
for an HPH, given the present state of HPH theory. The design
incorporates the most efficient design features and includes
sufficient flexibility in construction and opera.ion. Follow-
on work 1in this field should be positive steps toward
construction of a prototype, as opposed to more design and
research. There 1is a great deal to be learned in the
construction process. Most importantly, a positive step toward
construction prevents the tendency to "over-design." In the
case of this HPH, some of the theory is questionable, and
further analysis will only needlessly complicate any further
design modifications. The best way to move on is to build,
flight test, refine and build again.

Construction can be broken down into finite steps and
phases capable of being accomplished by individuals performing
thesis work. Since many portions of the project can be
performed simultaneously, some of the next few steps toward
realization of a hoverable HPH are presented below in no

particular order.
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1. Main rotor spar

Using the flight 1loads presented in this paper, a
composite main rotor spar needs to be designed, fabricated and
tested. Particular attention will need to be paid to the lay-
up to minimize the blade twist and any resulting coupling.
Test sections will need to be built and tested to ensure they
comform to the design criteria. A means for connecting each of
the sections and the blade grip needs to be designed, as well.

2. Main mast and reversing mechanism

The main mast, rotor blade hubs, and reversing mechanism
need to be built, fabricated and tested. A means for attaching
the rotor blades, feathering the blades (if flaps are not
used) and bearings and gears will need to be designed and
fabricated as well.

3. Ergometer

The structure of the ergometer is built, but the
instrumentation needs to be completed. Anthropometric data
and, power/gearing data resulting from testing on the
ergometer will be needed to design the undercarriage.

4. Main rotor blades

Construction of the rotor blades will require a tremendous
amount of manhours. Construction includes fabrication and
testing of ribs, and designing a means of fixing the ribs to
the spar. Construction of a test sectionbwill be needed to

determine rib spacing and qualify construction techniques.
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Critical to the construction of the rotor blades will be
developing an efficient means of adhereing the Mylar to the
ribs to create a perfectly smooth, unwrinkled surface.

5. Undercarriage

Specific design and fabricaticn of tle composite
undercarriage, to include the seat, seatback crank hub and
support structure is needed. In ormation regarding dimensions
and optimum configuration from the ergometer will be necessary
before the design can be completed.

f. Flight control system

Development of a flight control system includes estimation
of airframe parameters, and sizing and shaping of the
winglets. The pilot controls and a scheme to transfer the
inputs to the rotor blades need to be developed.

7. Construction of a simulator

A simulator will be used to select and train the pilot.
Construction of a simulator includes adapting the pilot
controls and interfacing the pedalling resistance with video

and controlling computer.

E. SUMMARY

The aerodynamic and structural theory required to design
a human-powered helicopter goes well beyond the 1limits
established for conventional helicopter design. As a result,
the basic tenets of helicopter design have been extrapolated

to the extreme limits in order tc design a machine capable of
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being hovered for one minute on one "humanpower." All of the
fields incorporated in helicopter design--aerodynamics,
structures, materials, controls, and propulsion--have been
combined to create the most simple and efficient helicopter
possible. The result of this design is a helicopter that is
capable of generating over 310 1lbs of thrust per horsepower.

This HPH is a 72 ft diameter, co-axial design with two
blades on each rotor. The rotor blades have a constant chord
of 4.5 ft out to 0.67R where they are linearly tapered with a
taper ratio of 1.8. The DAI 1135 airfoil was selected for its
high power factor (C,¥?/C,), low pitching moment, and tolerance
to surface imperfections. The airfoil was specially designed
to limit seperation bubble losses at a Reynolds number of
500,000 with the specific intent for use on human-powered
aircraft. Consequently, the rotor blades were designed—-
keeping ease of construction in mind--to maintain the Reynolds
number as close as possible to 500,000 over the outboard half
of the rotor blade. The final design keeps the Reynolds number
within 86,000 of 500,000 over the outboard half of the rotor
blade. Various methods of energy management are explored
including using tip weights and using bending-to-torsion
coupling in the composite rotor blade spars.

Performance calculations were performed with a Fortran
program using blade element theory. A vorﬁex lattice method
was also used to verify the blade element results, to provide

a more accurate representation of blade lift distribution for
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structural design purposes, and to provide circulation values
for the various blade stations. Various ground effect theories
were used, their results compared, and discrepency rationale
discussed. The effect of inflows on the lower set of blades
were calculated using a two-part induced-velocity model for
the upper blade, and the effects included in the performance
estimation. Although the power required to hover is a function
of the ground effect theory applied, the helicopter will
require approximately 1.25 hp to hover at 3 meters, and 0.8 hp
to hover just clear of the ground.

Human-power management is as critical as the aircraft
design itself and was studied exhaustively. A scheme for
calculating human power output versus time for different power
levels was devised using Miner’s Rule for cumulative fatigue
damage to structural components. An ergometer was built to
test, select, and train the pilot, and to provide optimal
anthropometric and drive system data for undercarriage design.
Design and construction of past human-powered aircraft was
studied to glean ideas and learn from their mistakes. The
final result 1is a HPH capable of achieving an historical
milestone of international stature by winning the AHS
sponsored Igor I. Sikorsky Award for the first human-powered
helicopter.

In a speech given by Dr. Paul B. Macheady to a group of
researchers he outlined his distinguished record of

achievements in human-powered and solar-powered vehicles. He
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stated that among the reasons for pursuing endeavors such as
these was "...changing attitudes and stimulating technology.
(Ref.43]" The helicopter is an aircraft of unparalleled
versatility with a somewhat maligned reputation. Recent events
such as the helicopter gunship successes in the Gulf War, have
helped to educate the general public regarding the
helicopter’s true capabilities and versatility. In pursuing
the goal of building a human-powered helicopter, the project
helps create a positive awareness of the helicopter that has
historically been somewhat deficient.

Dr. MacCready also makes the point that attitudes have
been more important in shaping technological history than
technological innovation itself. He cites as an example,
Charles Lindbergh’s Atlantic crossing as providing the public
awareness of aviation that generated the spirit and motivation
for many of the tremendous aviation developments of the
era.[Ref.43] This project--to develop, build and fly a human-

powered helicopter--is such a project.
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APPENDIX A:FIGURES
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Figure A-1l. ROTOR BLADE VORTEX DISTRIBUTION.
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Figure A~3, ROTOR BLADE INDUCED VELOCITY.
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LA, 3TATION

i ft)

LR500005
.-17499990
. 12500000
.77499962
12500020
17499980
72499940
. 37500000

2499960

67499920
. 12499890
.17500040
L 32500000
. 27499960
2. 02499920
.177499890
.22500040

117500000
12499770

APPENDIX B: TABLES

CHORD

(t1)

D

N
oo aagaug

DS

SN N

SRS EREA N
L. i

FEYHOLDS

HUMBER

93,587
133,958
174,329
214,700
255,07
195, 442
335,813
376,184
416,554
456,925
197,296
537,667
578,038
506,344
575,823
559,321
536,838
508, 375
473,930

INDUCED

VELOCITY
(fl./sec)

—— -t . o o ———

RIS I 6 N g g = R R e e ]

gl (6 I 23]

.34087288
00602007
.14764357
.27361500
.26820195
.49402618
.5928B3495
.68L86266
.77401865
85799658
. 93833959
.01548266
L0B977985
. 10473919
. 08577085
L(05066692
.01392794
.95981097
LB9225423

Table B-1. ROTOR BLADE STATION REYNOLDS NUMBERS.
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10
<

13

15.
17,
19,

’
ol

-
o

“"3.

R
a0
i
o)

Il

(FT)
1.00000000 1.
3.00000000 q,
H5.00000000 7.
7.00000000 10.
9.00000000 13.
11.00000000 16.
13.00000000 19,
15.00000000 22
17.00000000 25,
19.00000000 27.
21.00000000 30.
23.00000000 32,
25.00000000 33.
27 .00000000 34,
29,00000000 33.
31.00000000 33.
32.50000000 30
33.50000000 27.
34.50000000 23.
35.50000000 17
HI.ADE B8TATION THRUST
(ft) (1h)
.82500005 0.13327463
.47499990 0.27305669
.12500000 0.46243068
.77499962 0.70142114
.42500020 0.99000359 .
.07499980 " 71.,32018604
.72499940 1.71596837
37500000 2.15335131
02499960 - 2.64033365
67499920 3.17691660
.32499890 3.76309896
.97500040 4,39088239
62500000 5.08426619
.27499960C 5.51751041
.92499920 5.772230825
.57499890 5.95011323
. 22500040 6.04101038
.87500000 6.03300058
52499770 5.91538620

33,

ROTOR STATIGN

CIRCULATION

(sq ft/sec)

53017879
587509673
635529041
66722390
67425540
64608000
56073700

.42279050

17980970
79636190
19985960
25499730
59384540
03530510
75513460
12871550

.47932240

64979930
81584930

.36374090

WWWWWWWNNNERER=RRDIO0000

Table B-2. ROTOR BLADE STATION CIRCULATION.
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DRAG
(1b)

.07933248
. 16253854

.27526936
.41752487
.58930522 |

.79061025 !

.02143991
. 28179455
.57167363
.89107752
. 24000597
.61845970
.02643824
.28432918
.43595767
.54201698
. 59594560
.59118247
.52116704
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APPENDIX C: HPH COMPETITION RULES

Mnerican Helicopter Society
Igor I. Slkorsky
Human Powered Hel icopter Competition

A prize of $2¢,800 is offered by the american Hel icopter
Soclety for a successful controlled £light of a human powered
hel icopter.

Thls competition shall be conducted under the follaowing
rejulations and condltions laid down by the Human Powered
Hel fcopter Committee uf the American Hel icopter Society, and
shall be witnessed by the Natlonal Aero Club (NAC) who is the
national representative of the Federation Aeronautigque
1 ernationale (FAI). In the United States, the national
represantative of the FAI is the National Aeronautic
Assoclatlon (NAaA}.

Mote: The AHS has been advised by the Federal Aviation
Administration (FAA) that, in the United States of Amer{ca,
reg istration and airworthiness certification will not be
required for machines built for this competition on the
assumption that all flights will be limited to close
proximity to the ground and will generate no interference
with air commerce. All intending entrants are strongly
advised, during trials, to hold adegquate insurance coverage
for all third party risks and to take every precaution
against injury to people and damage to property. It is
expected that competfitors in countries other than the U.S.A.
will observe their own national £flylng and Insurance
regulations. '

REGULATIONS"
1. GENERAL P

1.1 The prize will be awarded by the AHS to the entrant
who first fulfills the conditions.

1.2 additionally, an attempt will be registered with the
Federation Aeronautique Internationale (FAI) as a
World Record for Human-Powered Hel icopter Flight
duratlion.

2. PRIZE

2.1 The ANS prize is $20,8@9 {n U.S. currency.
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3.

ELIGIBILITY

S |

4.

4.1

4.2

3.2

CONDI
air

4.1.1

4.1.2

4.1.3

The competition is international and is open to
individuals or teans from any part of the world.

For any and all questions reqgarding the acceptance of
entries, eligibility of an entrant, pilot, creu or
alrcraft under the regulations, or any other matter
relating to the AHS prize, the decision of the AHS |is
final.

All questions regarding the world record attempt will
be governed by the sporting code of the FAI and rest
exclusively with the NAC,

TIONS OF ENTRY
craft

The machine shall be a heavier-than-air machine.
The use of lighter-than-alr gases shall be
prohibited.

The machine shall be a rotary wing configuration
capable of vertical takeoff and landing in still
air, and at least one nember of the crew shall be
non-rotating.

The machine shall be powered and controlled by the .
crew during the entire flight, including
accelerating the rotar up to takeoff speed.

No devices for storing energy either for takeoff or
for use in, flight shall be permitted. Rotating
ae:odynam{c components, such as rotor blades, used
for Lift and/or control are exempt from
consideration as energy storing devices.

No part of the machine shall be jettisoned during
the flight including the rotor spin-up and takeoff.

Crew

4.2.1

The crew shall be those persons in the machine
during takeoff and flight, and there shall be no
limit set to their number.

No member of the crew shall be permitted to leave

or enter the aircraft at any time during takeotf or
£l ight, .
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No drugs or stimulants shall be used by any member
of the crew. An assurance must be given to the
official observers at the time of the attempt that
this requirement has been met.

Up to two handlers or ground crew shall be
permitted to assist in stabilizing the machine
during takeoff and landing, but in such a manner
that they do not assist in accelerating or
decelerating any part of the machine.

4.3 Ground Conditions

All attempts, which shall Include the takeoff,
shall be made over approximately level ground
({.e., with a slope not exceeding 1 in 160 in any
direction).

All attempts shall be male in still air, which
shall be defined as a wind not exceeding a mean
speed of approximately one meter per second (3.1
kilaneters per hour, 2.237 statute miles per hour,
1.5 nautical miles per hour) over the period of the
flight.

4.4 Flight Requirements

4. 4.1

The f1light requirements shall consist of hovering
for one minute while maintaining flight within a
l9-meter square. During this time the lowest part
of the machine shall exceed manentarily 3 meters
above the ground.

/
The machine shall be in continuous flight from
takeoff to landiny, and at_ no time during the
fl ight shall any part of the machine touch the
ground.

A raference point on the non-cotating part of the
machine will be established as a means whereby the
observers can judge that the machine stayed within
the confines of the l8-meter square.

The one minute hovering time and the momentary
achjevement of 3 meters altitude is required to win
the AHS prize. (Howaver, the FALl 198¢ regulations
specify that only the duration of the flight and a
momentary achievement of 3 meters altitude will be
recorded for the FAI world .record attempt, making
it possible to achieve a world record without
satisfylng the AHS prlze requirements.)
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4;5 OCbservation

Every attempt shall be observed by the HAC or by any
persons authorized by them to act as observers. It may
take place in the competitor's own country {f it is
affiliated with the FAI. 1In a country not so, it could
be advantageous to conduct the flight in a neighboring
country which 13 so affillated.

5. APPLICATIONS FOR ENTRY

5.1

Entry forms shall be obtained from and returned to
the American Hellicopter Society, 217 North

Washing ton Street, Alexandria, VA 22314, (793)684-
6777.

The entry fee shall be U.S. $15 (made payable to the
Anerican Hel lcopter Soclety).

Each entry form shall contain an application for
official observation of the competitor's attempt.

The entrant shall undertake to abide by the
conditions for official observation as set out on
the entry form and application for official
observation and shall undertake to defray all
expenses incurred in connection with the officlal
observation of the attempt.

The following fees and charges are male by the NAA
for record attempts in Class 1, Human Powered
Alrcraft. ,All attempts shall be for national and
international records.

Final notice of the proposed time and place of the
attempt requiring official observation may, 1If so
desired, be sent to the AHS later than the entry
form. It must in all cases be recejved at least
thirty days before the proposed date for the
attempt. This time is required by the NAC (the NAA
in the U.S.A.) to arrange for official observation.
Applications will be considered in order of recaipt.

Membership in the appropriate NAC and an FAI
Sporting Llcense Is required for all crew members
taking part in this compatition. MApplication forms
may be obtained from the NAC of the AHS. For this
competition, a pilot's license is not required.
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6: GENERAL CONDITIONS
6.1 Insurance

The entrant must take out on behalf of himself, his
crew, repregentatives or employees, liability
fnsurance in such form and mount to be specified by
the AHS, to indemnify the Amerjican Helicopter
Society, the NAC and the FAIl against any claims.
Evidence that such insurance has been effected must
be gsubmitted with the application for official
observation.

6.2 Revision of Regulations

6.2.1 These regulations shall remain in force until such
time as the AHS considers it necessary to amend
them, or the prize has been won.

6.2.2 The AHS reserves the right to add to, amend or omit
any of these regulations and to issue supplementary
regulations.

6.3 Interpretation of Regulations

The interpretation of these regulations or any of
the rejulations hereafter lssued rest entirely with
the AHS. The entrant shall be solely responsible to
the official observer for due observance of these
regqulations and shall be the person with whom the
official observers will deal in respect thereof, or
any other questions arising out of this compatition.
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APPENDIX E: FORCE TRANSDUCER

mcerface SpEA| ED SUPER-MINI LOAD CELLS

ADVANCED FONCE MEASUREMENT

IJ' ylgzqwu

Designed
for
Precision
Electronic
Force Measurement

Modsl SSM - 100 Modei SSM AF . 500
FEATURES
= Ultra Precision * Low Momenl Sensitivily
* Excellent Linearity ¢ Low Cost
¢ High Repeatability o Easily Inslalled
» Thermally Compensated * NBS Handbook 44 Sealable

RATED CAFACITIES: 50, 100, 250, 500, 750, 1000, 2000, 3000, and 5000 pounds
(222N, 445N, 1112N, 2224N, 3336, 4448N, BBIGN, 13345N, 22241N)

The Sesled Super-Mini ioed ccil Is s precislon siain gagn load cell which is waterprool and barometrically
insensitive N ts dosigned tor testing, walghing 8 lotce measurements In tansion 8 compression Intorlace’s
spplication of proprietary advanced materlals Inchnology. In sliain gage and fiexure design. produces losd
cells with the highest accuracy In the industry ynt priced cornpelitively whth fower petlormance unlis
These rugaed ce'ls have no moving parts lo wear out ar gel out of adjustment The specilications listad below
tHusirate the superior performance of Interface Sealed SSN Serles losd cells and are a major factor In thelr
wotldwide scceplance in applicalions such as struchral force lesling, thrust measurement. steelyard rod
converaions (1o }{-44, and OIMIL requirements), conveyor scales, check welighers, counting and while scales,
tensile testing and engine dynamomelers

For melric applications see Menic Sesled Supcv Muini Serlos offedng SOON, 1000N, 2000N, and SO00N capachies
and metrlc mounting threads

For appfications not requiring waterproof sealed units. sce the Super. Mlnl saries of load cells with Malsture
Resisiant {MR) coaling

SPECIFICATIONS™

Non Linearty—% Rated Outpt ... ... oo 1005
Hystorasis —% Rated Quipul e .. .... 1003
Non Raepaalabliity % Raled Oulpu( P 2002
Tempaerature Aange, Compensatad— °F . Lo (- 15" lo 65°Cy .. ...... 01to 150
Temperature Rangs, Operaling -°F . | {~55°1090°C) ... ..... ~ 65 10 200
Tempaersture Eftect on Aated Ontput—% of ﬂendlugllOO F (% of Reading/s55 8°C) . t008
Temperatute Effect on 2ero-- "% Rated OulpuV100°F (%6 of Rated Oulput/Ss O'C) ...... 2015
Creep, Aher 20 Min —84 Rated Owtpur® . ... .. ... 2003
Ovetload Ralings—% Raled Cnpnc"y

Sale ... ..... o . ... ... tis0

Uﬂlmuls .. RN P .. ..... 1800
Nominal Ou!pu(—mVN N N 3 /
Zoro Balance— 9% Rated Outpit .. e o L S
Input Resistence ~Ohms | e . ... TT3B34s0/-36
Outpul Resislance—Obme ... ..... . ... A 3504235
Excitation Voitage

Recommended —VDC ... e . e 10
Insulation Resistance, Bildge 10 Case —Megntuns e . o 5000

{1} Por SMA " Load Coll Torminology ¢:d Delnitiony
{2} Cranp spaciticatinn ig detsrmined af 1ated capacity Crenp prtnnrance sl 1educed loeds B proportional 1o the anphed loed

Crps gre 1 1004 0y @IEALACE BOC
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SEALED SUPER-MINI LOAD CLLLG =+~

4

TENSIONLOAD PRIMARY AXIS

INSTALLATION DIMENSIONS

MODEL ' A 8 [+ o] s
M
0 , D Yo . MF - ¢
SSM-50 inc! 25 2 '4 ] a-28 UNF .28
mm 84 51 ‘ﬁj Ve doep. lop 8 boltom —
h Y T - 21 HF .
SSM. 100, 250 ine 2mf 21 % “-28 UNF.28 ro
mm 84 ] 511 19 vi deep. lop 8 botiom -
S5SM- 500, 750, Inch k] 2 1Y % 20 UHF .28
1000, 2000, 3000  mm 76 [ st f 32 [ ' deeo. top & botom "!i
2 — o
Y , 1,18 UNF. RE
SSM- 5000 inch A 28] 1Y% - 1B U 2B
mm 89 [ 1] 44 %4 doep, lop 8 botiom C-

ELECTRICAL INFORMATION

The SSM.-80 thru SSM-250 Is supplied with 8 4 connectar shisldod cable {AWG28) 10 A Slm‘l fong The SSM-500 thry SSM-5000 load cels Bre
supplied with a rugged cabte (PVC Jacket AWG22) 10 11 (3m) long or & Bendix PCO4E-10-6P connecior A PCOSW-10-8S maling connectof is
avafisble at additionsl cost

Connecior Cable ‘ nroF exc] —i'
($SM-500 thru 5000) (At Modoly) !
1]
Pin Function Color Funclion E!"l -out i‘
A + ExcHation Red + Excltation l six ] _exc __..: S
8 + Outpu Green § + Oulput ko i
[of - Output Whie - Oulpul ann l, out)— - 4
o] - Exchalion Bisck ~ Exchtation L* j 1
E No Connection| Shitekt | No Conneaciion I l TENSION
F No Connection [——J uPsCALE
Wihing Code Comptiss with ISA §37 8 “"Specilication and Tesis for Straln Gege Foice Tiansducers” end SMA toad Cell Terminology
APPLICATION NOTES 4. Jam nuls may be used; however, care should be exercised 10 Bmi
the inateliation lorque as foliows:
t The Sealed Super-Minl load cett is spacificelly designed lof outdoor
usage and thus cen be used in scate pits snd batching plants or other :::: T:o frw SSM 250 :g :z: m g :::::;
thal are y fo the westher $5M 500 thru SSM- 1000, 200 loch pounds (22 51.mj
2 At lesst one dt ter thread engeg: fe desiiable; normaet SSM 2000 and SSi4 3000; €00 Inch pounde ©or-m)
engagement is shawn below: 8SM 3000 1000 Wich pounds (113N-m)
o . e ) S The force 1o be messured should be epplied to the acllya end of the
sgn :ggom'" 3000: Y’ ":’"'“) :: "t ('9":::) colt 10 oliminale possible eriors dus 10 cable inisraction The sctive
: " % (18mm) (1gmm) snd of the cefl is sepsrated from the cabie/connecior side by the siof
3 SSM. 50 thry end including SSM.- 1000 s7e anodized sluminum AR {cutout) in the Nexure (the serisl numbaer is alweys ahown on the
oiher units are sleciroless nickel plated steel inactive site )

Bolloming out of the mounting stud con cause lireparable damsge to the joad cel.

TERMS AND CONDITIONS

1 Ordering information' Sesled Supar #inis sre ordered by snaclfying 3 Terms: Net 30 deys In U S dolars, FOB Scottedale, Ardzons U S A.
Serles (SSM), Mode! (AJ for cable or AF for connecior) and capacity 4. Warrenty intarface. inc ‘g slandacd two
. : 3 -yoat werranly fa appliceble
(50 thiough 5000 tbs ) Exemple SSM-AJ-250 or SSM AF-1000 10 the Sasled Super Min) Serles losd call Intesface, Inc certifies thet
2 Prcing. ConeuR your local Interface Representative or the lsciory Rs cetibrélion are fr e 0 the U 8. Naflonal
for price and detivery. Bureau of Standatds (NBS)

Prices and speciticalions subject 1o chenge wihout notice.

imncerface
MTERFACE, WNC . 7401 € BUTHIERUS DR . SCOTTSDALE, AMMIONA 83200 USA . (§07) 948 6666 + TELEX 426 002

ANVANCED FONCE MEASUREMENT . 15.270 Y87 8%
Piied L USA
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, APPENDIX r: COMPUTER PROGRAMS
aunod ¢ ° I3 PROGRAM WI1LL COMPUTE TIIE LIFT FOR A FOUR DLADED

o

neyeq © NELICOPTER USING NLADE ELEMENT THEORY

TN T PROGRAM UBSES A LINEAR TAPER FOR ‘I'tI; OUTBOAND 33%
HOO(HG

nnn? IL-AL B,C,R,RR,0O,¥ N, VI, A, X,DR,RE,V,0R,M,CT,CR,151,82,1D,TC
HOON I'''AL L, TST,TS4,Q,071, T8, IV, IVT,IVTA,CM. MT

0nany FrINTS, "INPUT ROTOR RADIUZ 1M FEET:'

onngn 1AD*,RR

My g

aoony ¢ ' "I 18 THE OFFSET

ey g B ,

00054 :

SISTRR A PURINTY, "INPUT THE ROOT CHORD AND TIP CHORD IN FFEET:'

o0y e {1L.AD* ,CR,CT

0oy

N FEANTS, " INPUT TIE ROTOR RI'M: !

nonjoe IADY,OR

DN M1-NR*3,1416/30

0yl

nanxd "1 18 THE NUMBER OF RDLADE ELEMENTS
uan23 ] 40,0

DU 24 |

0nnes T I'=0 ‘

nu26 Cl, Cd. & Cm ARE FOR DAEl1l AIRFOIL
o027 ('"=1,4806

0020 " 0,01177

NV a0, 11

non3y ¢ THESE VALUES ARE FOR 0 AOA-FOUR FLAT PITCH
ninal ¢ ', 8705

(32 ‘11s,01018

(oeyy o "'HI 18 INFIL.OW ANGLE AND 18 EQUAM., TO THE
O34 ¢ : [LADE ANGLYE., 8 DEGREES FFOR DARIL,

00035 "1 {=8/57.3 '

00036 >

0nn7 C - 1) ACCOMODATE TIP LOBGSES .
00020 "1 =1=CT/(2*RR) .7 '
N30 T e2850/(3.1416%RR*“4+%0,0023767+0)

noo40 Brrl=-8QRT(2*TC) /2

10041

N4 ¢ : "DR" I8 THE LENGTH OF THE BLADE ELEMENT
aoNA3 Ji4=~(RR-E)/1 '
00044

0004% o N (10, FILE=THRUGT , DAT' ,B'TATIB="'NEW')

00046 ¢ ONENCLY , FILE='DRAI, DAT' ,8TNIUIS= 'NEW')

nonNA7? ¢ CPEN(12, FILE='REYHNOLD.DAT' ,3TATUS='NEW')

unnAaB ¢ CIEN(I3,FILE='INDVEL,.DAT' ,STATUS='NEW' )

0onn49 ¢ OFEN(L14, FILE='MOMENT ., DAT! , tI'ATUS='NEW ')

nonso .

000951 PO 100 N=i,1

wonn2 R=DR*N=DR/2+1

nuos3 C "M" I8 THE BLOPE FOR THE EQUATION FOR CHORD
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00054
nooss
0no0Nse
noos7
nunse
0pos9
nneeo
THOGEE
no0e2
e
00064
N006s
0066
NNo67
nnoees
nnoee
10070
non7i
nenN72
non73
HonN74
wN7%
wnn76
noo77
nep70
00079
nnnno
nnna1
N2
ny083
NG
00085
NO0NB~Aa
nooe?7
NnNes
0039
oo
nnnot
1nop92
0unNnNo3
009
NNoes
Nnoo9e
0097
nnoos
nnoo9
nnieoe
no101
10102

i

100
200

L A0

ENDIF

V=P *0
CALL REYNOLD (C,V,RE)

PRINT*, 'CIIORD 18:',.C,' R~',R,' Re~',RE
WRITE(12,*) C,R,RE

L=4* 54 ,07646% (0*R) **24CLADR*C/I2.17
D=4%*,534.07646* (O*R)**2'CD*DR*C/32.17

"T3" 19 THE ELEMENTAL THRUST
TS-L'CHS(PHI) ~D*8IN(FHT)
T84=18/4

IF (R.GT.(DJ*RR)) THENM
T34=0
TS=0

ENDIF
WRITE(10.*) R,TS4

"IV!'=THDUCED VELOCITY
IV=8QRT(T84/(4*3,1415*,0023767*R*DR) )
PRINT*,"R~' R, 'IND. VEL. «',1V
WRITE(13,*)R,C,RE, IV

"IST"18 THE TOTAL THRUSGT

TST=T8T4'10 '

"ID"18 ‘THE 1N-PLANE DRAG
ID=LASTN(PIL)+D*COB(I'1])
WRITE(11,*) R,ID
Q=ID*R
QT=QT+Q

CONTINUE , ,
_ CONTINUE e 0
{03E (10)
CIWBE (11)
CINGE (12)
CLOSE (13)
VI'=RR*0
PHINTY, ' ! ,
[INTY, "THE TOTAL THRUST TN POUNDS I3:',TST
1I['=(T40/ 850
FRINT*, *THE TOTAL 1IORSEPOWER REQUIRED 13:',HP
I'RINT*, "THE TI1P OPEED 18:',VT
FRINT*, *THE TIP LOSSES (Bl AND B2) ARE', D3, B2
EHD

HUMDER OF WAININGS IN PROGRAM UNIT: 0
HUMBER OF ERIMRS  IN PROGRAM UNIT: O

0103

GINROUTINE REYWOLDL (C,V,RE)
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npL1o4 RE=64104CHY
ag1os S A N

HUMDER OF WARIINGES IN PROGRAM LNIT: 0
IMBER OF ERRotes  IN PROGRAM UNIT: O

NUMDER OF WARININGS IN COMPI.LA'I'IC'N 1 0
NUMDBER OF LREGHS IN COMPILATION 1 «
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I u."i |'.l |'l |

nooy o
anin

OO0
IR
OO0
noon7z
onoon
noonng
SITTER NS
MR
el
NN
(gl
nne
SN
ooy
(nyoIn
BISIERKS)
0non20
Nnong |
naonan
naenaon
nunz:d
nonyn
026
'00027
Hnaa
029
LUN3n
nnp3)
onn32
(RTATH et I
0non3.yg
NON3Y
DON3AN
nno3y
nna3n
o039
00040
0nnnAql
noudan
00043
10044
000G
NO0a6
0onn47
nnoan
DB R
OOOS0
NONs
nnnsa
s

)

_ e~ m e o
b < TaeL

VEALLLVORTEX LATTICR METHODA & » 4

THIS PROGRAM COMPUTES THE LIFT OVER A ROTOR BLADE

YUING THE VORTEX LATTICE METHOD WITH OHLY ONE CHORDWISE

PANEL. THE. COORDINATES OF °I'MIE PANELS AND COMNTROI, POINTS

SUTUR RS TH REF.DZ pla 277, IO MODIFY THE PROGRAM, THE PANEL
COORDINATES RELD IO BE PUT INTO A FILE CALLLED VLM2.DAT. ‘THE
AIIAY VARIABLIS JH LINFD 0001,0002,0010 AND 0092 NEED TCO BE
AGIUGTED TO CTHE MUMDER OF PANELS. THE PROGRAM WSES THE VALUE -
”' AIR DENSITY FOR STANDAID DAY SEA LEVEL. THI VALUES FOR Kl
CUEGA, ROTOR DIAMETER., AN AMGLE OF NITACK ARG HOT PROMPTED AND
HIED TO BE ADJUSTED IN THE BobhY OF THE PROGRAM. THE SUBROUTINEF
GAUEE IS MODIFLIED ROM THE PROGRAM GIVEN TH REF.23 p.

TME PROGRAM OUTPUITS TWO T1LEG: GAMMA L DAT WilICH I” A DATA FILE j
'HTAINING (LM ORDER) ROl BLADE STATION AND CURCULATION, AND '
VIMIL.DAT WHICH CONTAINS THE ROTOR BLADE STATION AND LIFT AT THE)
" HITROL POINT. ;

PUAL X (200, Y(20) L 010200820000 . Y1(20),Y2(20) LA
BIAL W1, W2, W3. W4, WS, W20, ') . W6, L(20) . GAMMA (220}
AL OMEGA, D, ALPHALLIFT
CHEG A=, 838
OMEGA=I'TOR SPEED 1IN RAD/BEC
-2
BROTOI DIAMETER
) PHA=. 1396
ALPHA»ANGLE OF ATTACK IN RADIANS
2
Z= I HUMBER OF PANELS
Cd N(12, FILE='"VLMI.DAT ' ST IUS="OLD ")
DO 200 I=1.7
READ(12,*)E.Y%(I).Y (1), XV (1), Y1(I),X2(1),Y2(1)
PRINT*, E,X(I),Y(I)
CONTINUE
CTOSE(12)
VLM, DAT CONTAINS THE LATTICE COORDINATES .
» . X(1).Y(}) ARE THE COORDINATES OF THE CONTROL;
- POINTS. "~
X1(1).Y1(1) ARE THE LEFT JINWD CORNERS OF THE ,
HRSESHOE VORTICES M
X2(I).¥2(1) ARE THE RIGHT IIANID CORNERS OF THE
HORSESHOE VORTICES,¥.°
t JITINUE . 3

v 400 M=1,2
DO 300 N-1,7Z

Wlfl/((X(M)"XJ(N)B*(Y(M)'YR(N))*(X(M)~X2(N))‘(Y(M)-YI(N))) .

W2= ((X2(N)=-X1(H))*(X(M)- X (N))I+(Y2(N)- YI(N))’(Y(M) Yi(N)))/
(CXM)=X1 (D) A A20 MM =YL (N))*422) 420, 5)

W3"((X2(N)"X1(N))‘(X(M)'XQ(N))P(YZ(N)-Y!(N))‘(Y(M]—YQ(N)))/
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(ALATA R
aopnn’
00OSGE
O00s7
nnonsn
10050
ATRIAT XS]
o6l
nune.
unnen
(IO 6]
nooe6es
06
0noneGg’
(RIS TN
006
DONYTO
0nnN7)
non7 2
000772
Onn7\
noeTn

o00nze

Oon77
ano7n
ane7e
nunsae
(AISIIER!
oonn?
NUOREDN
anon.g
onoan
0nnnea
o0nan7
oooon
nounNne
00090
D00
anoal
(RIRTRE ]
IS N
nenans
0009
0nna’?
00O
O IRIRAAY)
noloo
0010l
anoloe
0010
noLog
DOLOS
0010

aan
A00

oS00

Q00

015

230

Q50

Pron

CCEXAM)=X2(M) ) ** 24 (Y(M)-Y2(N))*42)+40.5)

14X (M) =X1(N))/ ((X(M)-XL(N))*42

WA= (1/(YL(N) =Y (M)))*(
*2)**0.5)

+HY(M)=Y1(H))*

WS=(1/(Y2(N)=Y (M) )4 {11 (X(M)=X2(N))/(((X(M)-X2(N))**2
+HY(M)-Y2(N))**2)**0.5))

Wo=W14 (W2-W3) +W1- W5
IF (Q.EQ.2) WG~-W6
WM, N) =W (M, ) W6
CONTINUE -

L NT INUE

PPOUQLUEQ.2) GO TO 900

v 500 N=1,7
Y1 (N)=-Y1(N)
Y2 (N)==Y2(N)
t“"UTINUE
AR
0 100
CONTINUE
1t 9195 N=1.7
Y](N)'-YI(N)
(N)-—Yﬁ(N)
”HIINUE
12

oy 930 I-1.N
W(I,N+1)=-1

CONTINUE
. L , - B ~
CALL GAUSS (N.W) |
[TNT*, W(ILne GAMMA (M) ', LIFT'
PLINT®, - L e ! -

CUEN (10, FILE="GAMMA.DAT' ,5TATUS="NEW")
no 950 I-1,NH
GAMMA(I)=W(I . M+1)*A443 1 116*Y(I)*OMEGA*ALIHA
L(I)=2*GAMMA(I)*. 00237674 Y (1) *OMEGA* (Y2(1)-Y1(I))
PRINT * ,W(T,Nt1),GAMMA(T),L(1)
WRITE (10,*) Y(I).GAMMA(I)

LIFT=LIFTIL(]) | i
CONTINUE ¢ '
LS E (10) !

PLINT*, "THE TOTAL LIFI 13:',LIFT,'lbs’
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0n1n7 ‘ ﬂPhH(lO.FILE-'VLMJ.DAf’.3TA1U3-‘NEW') ‘

0n)oun o 960 I-1,N

unlng WRITE(10,*%)Y(]),L(T)
00110 960 * CONTINUE

SIFAR | ClsE (10)

nnyyn LN

HUMBER OF WARMYINGG IN PROGRAM UHIT: O
NUMBER OF ERRS IN PROGRAM UINIT: O

aniLn CUMMOUTINE GAUSS (M, W)

noll4g NEAN. EPS,EP$2,DET,TM,R, VA, TEMP

nnul)s THTEGER PV T

00114 TEAL W(20,21)

ooz s 1.0 '

oni1g 10 I (1.0+EPS.GT.1.0)THEN

onN11Y EPS~EPS/2

120 30 TO 10

onL2l PHTR

o122 FREeEPS*2 .
00123 'RIr*, *"MACHINE ENSILON=',EPS

00124 FP"”=EPS*2 '

NOLE2H o DET-L

(ATAR L) Dy 1010 I=1, N 1

00127 EREVES

nolan Py 20 J=I+41,N

A TR AAL] IF (ABS(W(PV,1)) .LT. ABS(W(J,I))) PV=]
o030 20 CONTINUE

G333l IF (PV.EQ.I) GOTO 1050

N3z v 30 JC=1,N+1

0133 TM=W(I,JC)

N34 W(I,JC)=W(PV,K6JC)

NN1a% W(PV,JC)=TM

nolNe 30 CONTINUE

Q0137 1045 NET=DET* (~1)

00133 1050 AR (W(I,I). DQ,O)/GO TO 1200

0019 N 1060 JR=T1+1, M

011140 IF (W(JR,1).NE.O) THEN

nnl4n R=W(JR,I),/W(I,T)

onl14g2 DO 40 KC=1+1,N+1

0n1an TEMP=W(JR, KC)

00141 ' W(JIR,KC)=W(JR.RC)-R*W(I,bKC) :
00145 , IF (ADS(W(JR,.KC)).LT.EPS2*TEMP) W(Jn KC)=0.0
o01an 40 CONTINUE

0147 END IT _ |
00118 1060 CONTINUE , ‘
no149 1010 CONTINUE ‘
00150 DO 70 I=1,N : : |
NN DBIET=DET*W(I,T) '

NOIG2 1070 CONTINUE

unlﬁﬁ .

TR (e (WiN,N)LEQ.0) Gy TO 1200

oul1n5 WN,+1)=W(N,N+1) /W(N,N)
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nnLsG
00157
nrnlLsn
uulsHe
00160
nolel
00162
nni63
0ol64
OO16%
0166
00167
noLaen

1070

1080

1200

1) 1080 NV=N-1,1,-1
VA=W(NV, N+1)
D 10755 K=NV+1, N
VA=VA=W(NV, ) *W (K, N4 1)

COMTINUE
W(NV,N+1)=VA/W(HV,NV)
CONTINUE

11 TURN '
PEINTA, "MATRIX IS5 SINGULAR'
AURIY

e
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APPENDIX G: MYLAR INFORMATION

- e i Ry

)
t

.u......m.. LI AN SRS M e ToEe
PHYSICAL.- THERMAL ) P
PROPERTIES
ON A ROLL WITH QUALITY- L

Mn ar polyaster flim retains good physical prop- therma! properiles of Mn.an are summarized in o s -
eriles over & wide temperature rangs {—70°C to Table 1. Detalled Information and other physical . .
+150°C); and It is also used al temperatures from and thermal properties are described Inthe remalin-

—250°C 1o +200°C when the physical require- Ing pages of this bulletin.
ments are not as demanding. Some physical and
TABLE | ' -
TYPICAL PHYSICAL. AND THERMAL PROPERTIES ' :
OF MYLAR POLYESTER FiLM
UNIT OF ‘
PROPERTY TYPICAL VALUE MEASURE TEST METHOD RN
sive ' W

Gage snd Type

92A
End Use tndustrisi

Vldco Tape

Slrongm at 5%
15200 psl ASTM D 882

Elongstion
ps! ___ASTM D@82
siTy A LASTMYD 882k
psi3i? 4 I‘l! - gﬁaaz H
% ASTM O 882
Ya ASTM D 882

>

-

-

. b RY 'Y > 2 ~ o
Yok kicrons A I § 24 durodigen s .

. 1.392 1.391 © gramsicc ASTM D 1505 . v

R V) S

Sz ..-lm\.

Density

xq.-mymnr R |y
S

oY

Melt Polm T 253 252
Dimensional Sidbiiity VI 1 G Ay #R s s ,,~ 3T 2 :
TR b et Lh; I3 ?iﬁ et
2 ; "R B 3
) 3 1500‘ IMO ." ?5’ 4, i'Y 33 74 L e
:\ RETLS 1,02f-~" ‘ ¥y L8N » . .r'
Spccm:: Heat : ‘
—-" " o ¥ 38 " ¥,
glnﬂa\ ¢
o {
i) _
b ; 1w, : .
um Flame cm- SvIM2 94VIM-2 Slow to séff- Y ”
extinguishing L ’ ‘\f'
o b
o J
1 1 6 " .‘,’,wx . !
N .




APPENDIX H: HPH DRAWINGS
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